blob: f398d199de4947b14f208b0636a156c29a88c746 [file] [log] [blame]
#!/usr/bin/python
from __future__ import print_function
from matplotlib import pylab
import gflags
import glog
import numpy
import scipy
import scipy.integrate
import sys
from frc971.control_loops.python import polydrivetrain
import y2018.control_loops.python.drivetrain
"""This file is my playground for implementing spline following.
All splines here are cubic bezier splines. See
https://en.wikipedia.org/wiki/B%C3%A9zier_curve for more details.
"""
FLAGS = gflags.FLAGS
def spline(alpha, control_points):
"""Computes a Cubic Bezier curve.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline points. n is the dimension of the control
points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
alpha_matrix = [[(1.0 - a)**3.0, 3.0 * (1.0 - a)**2.0 * a,
3.0 * (1.0 - a) * a**2.0, a**3.0] for a in alpha]
return control_points * numpy.matrix(alpha_matrix).T
def dspline(alpha, control_points):
"""Computes the derivative of a Cubic Bezier curve wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline point derivatives. n is the dimension of the
control points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
dalpha_matrix = [[
-3.0 * (1.0 - a)**2.0, 3.0 * (1.0 - a)**2.0 + -2.0 * 3.0 *
(1.0 - a) * a, -3.0 * a**2.0 + 2.0 * 3.0 * (1.0 - a) * a, 3.0 * a**2.0
] for a in alpha]
return control_points * numpy.matrix(dalpha_matrix).T
def ddspline(alpha, control_points):
"""Computes the second derivative of a Cubic Bezier curve wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline point second derivatives. n is the dimension of
the control points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
ddalpha_matrix = [[
2.0 * 3.0 * (1.0 - a),
-2.0 * 3.0 * (1.0 - a) + -2.0 * 3.0 * (1.0 - a) + 2.0 * 3.0 * a,
-2.0 * 3.0 * a + 2.0 * 3.0 * (1.0 - a) - 2.0 * 3.0 * a,
2.0 * 3.0 * a
] for a in alpha]
return control_points * numpy.matrix(ddalpha_matrix).T
def dddspline(alpha, control_points):
"""Computes the third derivative of a Cubic Bezier curve wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline point second derivatives. n is the dimension of
the control points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
ddalpha_matrix = [[
-2.0 * 3.0,
2.0 * 3.0 + 2.0 * 3.0 + 2.0 * 3.0,
-2.0 * 3.0 - 2.0 * 3.0 - 2.0 * 3.0,
2.0 * 3.0
] for a in alpha]
return control_points * numpy.matrix(ddalpha_matrix).T
def spline_theta(alpha, control_points, dspline_points=None):
"""Computes the heading of a robot following a Cubic Bezier curve at alpha.
Args:
alpha: scalar or list of spline parameters to calculate the heading at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
m array of spline point headings. m is the number of points in 'alpha'.
"""
if dspline_points is None:
dspline_points = dspline(alpha, control_points)
return numpy.arctan2(
numpy.array(dspline_points)[1, :], numpy.array(dspline_points)[0, :])
def dspline_theta(alpha,
control_points,
dspline_points=None,
ddspline_points=None):
"""Computes the derivative of the heading at alpha.
This is the derivative of spline_theta wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the derivative
of the heading at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
m array of spline point heading derivatives. m is the number of points
in 'alpha'.
"""
if dspline_points is None:
dspline_points = dspline(alpha, control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, control_points)
dx = numpy.array(dspline_points)[0, :]
dy = numpy.array(dspline_points)[1, :]
ddx = numpy.array(ddspline_points)[0, :]
ddy = numpy.array(ddspline_points)[1, :]
return 1.0 / (dx**2.0 + dy**2.0) * (dx * ddy - dy * ddx)
def ddspline_theta(alpha,
control_points,
dspline_points=None,
ddspline_points=None,
dddspline_points=None):
"""Computes the second derivative of the heading at alpha.
This is the second derivative of spline_theta wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the second
derivative of the heading at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
m array of spline point heading second derivatives. m is the number of
points in 'alpha'.
"""
if dspline_points is None:
dspline_points = dspline(alpha, control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, control_points)
if dddspline_points is None:
dddspline_points = dddspline(alpha, control_points)
dddspline_points = dddspline(alpha, control_points)
dx = numpy.array(dspline_points)[0, :]
dy = numpy.array(dspline_points)[1, :]
ddx = numpy.array(ddspline_points)[0, :]
ddy = numpy.array(ddspline_points)[1, :]
dddx = numpy.array(dddspline_points)[0, :]
dddy = numpy.array(dddspline_points)[1, :]
return -1.0 / ((dx**2.0 + dy**2.0)**2.0) * (dx * ddy - dy * ddx) * 2.0 * (
dy * ddy + dx * ddx) + 1.0 / (dx**2.0 + dy**2.0) * (dx * dddy - dy *
dddx)
class Path(object):
"""Represents a path to follow."""
def __init__(self, control_points):
"""Constructs a path given the control points."""
self._control_points = control_points
def spline_velocity(alpha):
return numpy.linalg.norm(dspline(alpha, self._control_points), axis=0)
self._point_distances = [0.0]
num_alpha = 100
# Integrate the xy velocity as a function of alpha for each step in the
# table to get an alpha -> distance calculation. Gaussian Quadrature
# is quite accurate, so we can get away with fewer points here than we
# might think.
for alpha in numpy.linspace(0.0, 1.0, num_alpha)[:-1]:
self._point_distances.append(
scipy.integrate.fixed_quad(spline_velocity, alpha, alpha + 1.0
/ (num_alpha - 1.0))[0] +
self._point_distances[-1])
def distance_to_alpha(self, distance):
"""Converts distances along the spline to alphas.
Args:
distance: A scalar or array of distances to convert
Returns:
An array of distances, (1 big if the input was a scalar)
"""
if numpy.isscalar(distance):
return numpy.array([self._distance_to_alpha_scalar(distance)])
else:
return numpy.array([self._distance_to_alpha_scalar(d) for d in distance])
def _distance_to_alpha_scalar(self, distance):
"""Helper to compute alpha for a distance for a single scalar."""
if distance <= 0.0:
return 0.0
elif distance >= self.length():
return 1.0
after_index = numpy.searchsorted(
self._point_distances, distance, side='right')
before_index = after_index - 1
# Linearly interpolate alpha from our (sorted) distance table.
return (distance - self._point_distances[before_index]) / (
self._point_distances[after_index] -
self._point_distances[before_index]) * (1.0 / (
len(self._point_distances) - 1.0)) + float(before_index) / (
len(self._point_distances) - 1.0)
def length(self):
"""Returns the length of the spline (in meters)"""
return self._point_distances[-1]
# TODO(austin): need a better name...
def xy(self, distance):
"""Returns the xy position as a function of distance."""
return spline(self.distance_to_alpha(distance), self._control_points)
# TODO(austin): need a better name...
def dxy(self, distance):
"""Returns the xy velocity as a function of distance."""
dspline_point = dspline(
self.distance_to_alpha(distance), self._control_points)
return dspline_point / numpy.linalg.norm(dspline_point, axis=0)
# TODO(austin): need a better name...
def ddxy(self, distance):
"""Returns the xy acceleration as a function of distance."""
alpha = self.distance_to_alpha(distance)
dspline_points = dspline(alpha, self._control_points)
ddspline_points = ddspline(alpha, self._control_points)
norm = numpy.linalg.norm(
dspline_points, axis=0)**2.0
return ddspline_points / norm - numpy.multiply(
dspline_points, (numpy.array(dspline_points)[0, :] *
numpy.array(ddspline_points)[0, :] +
numpy.array(dspline_points)[1, :] *
numpy.array(ddspline_points)[1, :]) / (norm**2.0))
def theta(self, distance, dspline_points=None):
"""Returns the heading as a function of distance."""
return spline_theta(
self.distance_to_alpha(distance),
self._control_points,
dspline_points=dspline_points)
def dtheta(self, distance, dspline_points=None, ddspline_points=None):
"""Returns the angular velocity as a function of distance."""
alpha = self.distance_to_alpha(distance)
if dspline_points is None:
dspline_points = dspline(alpha, self._control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, self._control_points)
dtheta_points = dspline_theta(alpha, self._control_points,
dspline_points, ddspline_points)
return dtheta_points / numpy.linalg.norm(dspline_points, axis=0)
def ddtheta(self,
distance,
dspline_points=None,
ddspline_points=None,
dddspline_points=None):
"""Returns the angular acceleration as a function of distance."""
alpha = self.distance_to_alpha(distance)
if dspline_points is None:
dspline_points = dspline(alpha, self._control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, self._control_points)
if dddspline_points is None:
dddspline_points = dddspline(alpha, self._control_points)
dtheta_points = dspline_theta(alpha, self._control_points,
dspline_points, ddspline_points)
ddtheta_points = ddspline_theta(alpha, self._control_points,
dspline_points, ddspline_points,
dddspline_points)
# TODO(austin): Factor out the d^alpha/dd^2.
return ddtheta_points / numpy.linalg.norm(
dspline_points, axis=0)**2.0 - numpy.multiply(
dtheta_points, (numpy.array(dspline_points)[0, :] *
numpy.array(ddspline_points)[0, :] +
numpy.array(dspline_points)[1, :] *
numpy.array(ddspline_points)[1, :]) /
((numpy.array(dspline_points)[0, :]**2.0 +
numpy.array(dspline_points)[1, :]**2.0)**2.0))
def main(argv):
# Build up the control point matrix
start = numpy.matrix([[0.0, 0.0]]).T
c1 = numpy.matrix([[0.5, 0.0]]).T
c2 = numpy.matrix([[0.5, 1.0]]).T
end = numpy.matrix([[1.0, 1.0]]).T
control_points = numpy.hstack((start, c1, c2, end))
# The alphas to plot
alphas = numpy.linspace(0.0, 1.0, 1000)
# Compute x, y and the 3 derivatives
spline_points = spline(alphas, control_points)
dspline_points = dspline(alphas, control_points)
ddspline_points = ddspline(alphas, control_points)
dddspline_points = dddspline(alphas, control_points)
# Compute theta and the two derivatives
theta = spline_theta(alphas, control_points, dspline_points=dspline_points)
dtheta = dspline_theta(
alphas, control_points, dspline_points=dspline_points)
ddtheta = ddspline_theta(
alphas,
control_points,
dspline_points=dspline_points,
dddspline_points=dddspline_points)
# Plot the control points and the spline.
pylab.figure()
pylab.plot(
numpy.array(control_points)[0, :],
numpy.array(control_points)[1, :],
'-o',
label='control')
pylab.plot(
numpy.array(spline_points)[0, :],
numpy.array(spline_points)[1, :],
label='spline')
pylab.legend()
# For grins, confirm that the double integral of the acceleration (with
# respect to the spline parameter) matches the position. This lets us
# confirm that the derivatives are consistent.
xint_plot = numpy.matrix(numpy.zeros((2, len(alphas))))
dxint_plot = xint_plot.copy()
xint = spline_points[:, 0].copy()
dxint = dspline_points[:, 0].copy()
xint_plot[:, 0] = xint
dxint_plot[:, 0] = dxint
for i in range(len(alphas) - 1):
xint += (alphas[i + 1] - alphas[i]) * dxint
dxint += (alphas[i + 1] - alphas[i]) * ddspline_points[:, i]
xint_plot[:, i + 1] = xint
dxint_plot[:, i + 1] = dxint
# Integrate up the spline velocity and heading to confirm that given a
# velocity (as a function of the spline parameter) and angle, we will move
# from the starting point to the ending point.
thetaint_plot = numpy.zeros((len(alphas),))
thetaint = theta[0]
dthetaint_plot = numpy.zeros((len(alphas),))
dthetaint = dtheta[0]
thetaint_plot[0] = thetaint
dthetaint_plot[0] = dthetaint
txint_plot = numpy.matrix(numpy.zeros((2, len(alphas))))
txint = spline_points[:, 0].copy()
txint_plot[:, 0] = txint
for i in range(len(alphas) - 1):
dalpha = alphas[i + 1] - alphas[i]
txint += dalpha * numpy.linalg.norm(
dspline_points[:, i]) * numpy.matrix(
[[numpy.cos(theta[i])], [numpy.sin(theta[i])]])
txint_plot[:, i + 1] = txint
thetaint += dalpha * dtheta[i]
dthetaint += dalpha * ddtheta[i]
thetaint_plot[i + 1] = thetaint
dthetaint_plot[i + 1] = dthetaint
# Now plot x, dx/dalpha, ddx/ddalpha, dddx/dddalpha, and integrals thereof
# to perform consistency checks.
pylab.figure()
pylab.plot(alphas, numpy.array(spline_points)[0, :], label='x')
pylab.plot(alphas, numpy.array(xint_plot)[0, :], label='ix')
pylab.plot(alphas, numpy.array(dspline_points)[0, :], label='dx')
pylab.plot(alphas, numpy.array(dxint_plot)[0, :], label='idx')
pylab.plot(alphas, numpy.array(txint_plot)[0, :], label='tix')
pylab.plot(alphas, numpy.array(ddspline_points)[0, :], label='ddx')
pylab.plot(alphas, numpy.array(dddspline_points)[0, :], label='dddx')
pylab.legend()
# Now do the same for y.
pylab.figure()
pylab.plot(alphas, numpy.array(spline_points)[1, :], label='y')
pylab.plot(alphas, numpy.array(xint_plot)[1, :], label='iy')
pylab.plot(alphas, numpy.array(dspline_points)[1, :], label='dy')
pylab.plot(alphas, numpy.array(dxint_plot)[1, :], label='idy')
pylab.plot(alphas, numpy.array(txint_plot)[1, :], label='tiy')
pylab.plot(alphas, numpy.array(ddspline_points)[1, :], label='ddy')
pylab.plot(alphas, numpy.array(dddspline_points)[1, :], label='dddy')
pylab.legend()
# And for theta.
pylab.figure()
pylab.plot(alphas, theta, label='theta')
pylab.plot(alphas, dtheta, label='dtheta')
pylab.plot(alphas, ddtheta, label='ddtheta')
pylab.plot(alphas, thetaint_plot, label='thetai')
pylab.plot(alphas, dthetaint_plot, label='dthetai')
pylab.plot(
alphas,
numpy.linalg.norm(
numpy.array(dspline_points), axis=0),
label='velocity')
# Now, repeat as a function of path length as opposed to alpha
path = Path(control_points)
distance_count = 1000
position = path.xy(0.0)
velocity = path.dxy(0.0)
theta = path.theta(0.0)
omega = path.dtheta(0.0)
iposition_plot = numpy.matrix(numpy.zeros((2, distance_count)))
ivelocity_plot = numpy.matrix(numpy.zeros((2, distance_count)))
iposition_plot[:, 0] = position.copy()
ivelocity_plot[:, 0] = velocity.copy()
itheta_plot = numpy.zeros((distance_count,))
iomega_plot = numpy.zeros((distance_count,))
itheta_plot[0] = theta
iomega_plot[0] = omega
distances = numpy.linspace(0.0, path.length(), distance_count)
for i in xrange(len(distances) - 1):
position += velocity * (distances[i + 1] - distances[i])
velocity += path.ddxy(distances[i]) * (distances[i + 1] - distances[i])
iposition_plot[:, i + 1] = position
ivelocity_plot[:, i + 1] = velocity
theta += omega * (distances[i + 1] - distances[i])
omega += path.ddtheta(distances[i]) * (distances[i + 1] - distances[i])
itheta_plot[i + 1] = theta
iomega_plot[i + 1] = omega
pylab.figure()
pylab.plot(distances, numpy.array(path.xy(distances))[0, :], label='x')
pylab.plot(distances, numpy.array(iposition_plot)[0, :], label='ix')
pylab.plot(distances, numpy.array(path.dxy(distances))[0, :], label='dx')
pylab.plot(distances, numpy.array(ivelocity_plot)[0, :], label='idx')
pylab.plot(distances, numpy.array(path.ddxy(distances))[0, :], label='ddx')
pylab.legend()
pylab.figure()
pylab.plot(distances, numpy.array(path.xy(distances))[1, :], label='y')
pylab.plot(distances, numpy.array(iposition_plot)[1, :], label='iy')
pylab.plot(distances, numpy.array(path.dxy(distances))[1, :], label='dy')
pylab.plot(distances, numpy.array(ivelocity_plot)[1, :], label='idy')
pylab.plot(distances, numpy.array(path.ddxy(distances))[1, :], label='ddy')
pylab.legend()
pylab.figure()
pylab.plot(distances, path.theta(distances), label='theta')
pylab.plot(distances, itheta_plot, label='itheta')
pylab.plot(distances, path.dtheta(distances), label='omega')
pylab.plot(distances, iomega_plot, label='iomega')
pylab.plot(distances, path.ddtheta(distances), label='alpha')
pylab.legend()
# TODO(austin): Start creating a velocity plan now that we have all the
# derivitives of our spline.
velocity_drivetrain = polydrivetrain.VelocityDrivetrainModel(
y2018.control_loops.python.drivetrain.kDrivetrain)
vmax = numpy.inf
vmax = 10.0
lateral_accel_plan = numpy.array(numpy.zeros((distance_count, )))
lateral_accel_plan.fill(vmax)
curvature_plan = lateral_accel_plan.copy()
longitudal_accel = 15.0
lateral_accel = 20.0
for i, distance in enumerate(distances):
lateral_accel_plan[i] = min(
lateral_accel_plan[i],
numpy.sqrt(lateral_accel / numpy.linalg.norm(path.ddxy(distance))))
# We've now got the equation: K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
# We need to find the feasible
current_ddtheta = path.ddtheta(distance)[0]
current_dtheta = path.dtheta(distance)[0]
K1 = numpy.matrix(
[[-velocity_drivetrain.robot_radius_l * current_ddtheta],
[velocity_drivetrain.robot_radius_r * current_ddtheta]])
K2 = numpy.matrix(
[[1.0 - velocity_drivetrain.robot_radius_l * current_dtheta],
[1.0 + velocity_drivetrain.robot_radius_r * current_dtheta]])
A = velocity_drivetrain.A_continuous
B = velocity_drivetrain.B_continuous
# Now, rephrase it as K5 a + K3 v^2 + K4 v = U
# Now, rephrase it as K5 a + K3 v^2 + K4 v = U
K3 = numpy.linalg.inv(B) * K1
K5 = numpy.linalg.inv(B) * K2
K4 = -K5
x = []
for a, b in [(K3[0, 0], K4[0, 0]), (K3[1, 0], K4[1, 0])]:
for c in [12.0, -12.0]:
middle = b * b - 4.0 * a * c
if middle >= 0.0:
x.append((-b + numpy.sqrt(middle)) / (2.0 * a))
x.append((-b - numpy.sqrt(middle)) / (2.0 * a))
maxx = 0.0
for newx in x:
if newx < 0.0:
continue
U = (K3 * newx * newx + K4 * newx).T
# TODO(austin): We know that one of these *will* be +-12.0. Only
# check the other one.
if not (numpy.abs(U) > 12.0 + 1e-6).any():
maxx = max(newx, maxx)
if maxx == 0.0:
print('Could not solve')
curvature_plan[i] = min(lateral_accel_plan[i], maxx)
pylab.figure()
pylab.plot(distances, lateral_accel_plan, label='accel pass')
pylab.plot(distances, curvature_plan, label='voltage limit pass')
pylab.xlabel("distance along spline (m)")
pylab.ylabel("velocity (m/s)")
pylab.legend()
pylab.show()
if __name__ == '__main__':
argv = FLAGS(sys.argv)
sys.exit(main(argv))