| *************** |
| Getting Started |
| *************** |
| |
| Add TinyUSB to your project |
| --------------------------- |
| |
| It is relatively simple to incorporate tinyusb to your (existing) project |
| |
| |
| * Copy or ``git submodule`` this repo into your project in a subfolder. Let's say it is *your_project/tinyusb* |
| * Add all the .c in the ``tinyusb/src`` folder to your project |
| * Add *your_project/tinyusb/src* to your include path. Also make sure your current include path also contains the configuration file tusb_config.h. |
| * Make sure all required macros are all defined properly in tusb_config.h (configure file in demo application is sufficient, but you need to add a few more such as CFG_TUSB_MCU, CFG_TUSB_OS since they are passed by IDE/compiler to maintain a unique configure for all boards). |
| * If you use the device stack, make sure you have created/modified usb descriptors for your own need. Ultimately you need to implement all **tud descriptor** callbacks for the stack to work. |
| * Add tusb_init() call to your reset initialization code. |
| * Call ``tud_int_handler()`` (device) and/or ``tuh_int_handler()`` (host) in your USB IRQ Handler |
| * Implement all enabled classes's callbacks. |
| * If you don't use any RTOSes at all, you need to continuously and/or periodically call tud_task()/tuh_task() function. All of the callbacks and functionality are handled and invoked within the call of that task runner. |
| |
| .. code-block:: |
| |
| int main(void) |
| { |
| your_init_code(); |
| tusb_init(); // initialize tinyusb stack |
| |
| while(1) // the mainloop |
| { |
| your_application_code(); |
| |
| tud_task(); // device task |
| tuh_task(); // host task |
| } |
| } |
| |
| Examples |
| -------- |
| |
| For your convenience, TinyUSB contains a handful of examples for both host and device with/without RTOS to quickly test the functionality as well as demonstrate how API() should be used. Most examples will work on most of `the supported Boards <boards.md>`_. Firstly we need to ``git clone`` if not already |
| |
| .. code-block:: |
| |
| $ git clone https://github.com/hathach/tinyusb tinyusb |
| $ cd tinyusb |
| |
| Some TinyUSB examples also requires external submodule libraries in ``/lib`` such as FreeRTOS, Lightweight IP to build. Run following command to fetch them |
| |
| .. code-block:: |
| |
| $ git submodule update --init lib |
| |
| In addition, MCU driver submodule is also needed to provide low-level MCU peripheral's driver. Luckily, it will be fetched if needed when you run the ``make`` to build your board. |
| |
| Note: some examples especially those that uses Vendor class (e.g webUSB) may requires udev permission on Linux (and/or macOS) to access usb device. It depends on your OS distro, typically copy ``/examples/device/99-tinyusb.rules`` file to /etc/udev/rules.d/ then run ``sudo udevadm control --reload-rules && sudo udevadm trigger`` is good enough. |
| |
| Build |
| ^^^^^ |
| |
| To build example, first change directory to an example folder. |
| |
| .. code-block:: |
| |
| $ cd examples/device/cdc_msc |
| |
| Then compile with ``make BOARD=[board_name] all``\ , for example |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express all |
| |
| Note: ``BOARD`` can be found as directory name in ``hw/bsp``\ , either in its family/boards or directly under bsp (no family). |
| |
| Port Selection |
| ~~~~~~~~~~~~~~ |
| |
| If a board has several ports, one port is chosen by default in the individual board.mk file. Use option ``PORT=x`` To choose another port. For example to select the HS port of a STM32F746Disco board, use: |
| |
| .. code-block:: |
| |
| $ make BOARD=stm32f746disco PORT=1 all |
| |
| Port Speed |
| ~~~~~~~~~~ |
| |
| A MCU can support multiple operational speed. By default, the example build system will use the fastest supported on the board. Use option ``SPEED=full/high`` e.g To force F723 operate at full instead of default high speed |
| |
| .. code-block:: |
| |
| $ make BOARD=stm32f746disco SPEED=full all |
| |
| Size Analysis |
| ~~~~~~~~~~~~~ |
| |
| First install `linkermap tool <https://github.com/hathach/linkermap>`_ then ``linkermap`` target can be used to analyze code size. You may want to compile with ``NO_LTO=1`` since -flto merges code across .o files and make it difficult to analyze. |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express NO_LTO=1 all linkermap |
| |
| Debug |
| ^^^^^ |
| |
| To compile for debugging add ``DEBUG=1``\ , for example |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express DEBUG=1 all |
| |
| Log |
| ~~~ |
| |
| Should you have an issue running example and/or submitting an bug report. You could enable TinyUSB built-in debug logging with optional ``LOG=``. LOG=1 will only print out error message, LOG=2 print more information with on-going events. LOG=3 or higher is not used yet. |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express LOG=2 all |
| |
| Logger |
| ~~~~~~ |
| |
| By default log message is printed via on-board UART which is slow and take lots of CPU time comparing to USB speed. If your board support on-board/external debugger, it would be more efficient to use it for logging. There are 2 protocols: |
| |
| |
| * `LOGGER=rtt`: use `Segger RTT protocol <https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/>`_ |
| |
| * Cons: requires jlink as the debugger. |
| * Pros: work with most if not all MCUs |
| * Software viewer is JLink RTT Viewer/Client/Logger which is bundled with JLink driver package. |
| |
| * ``LOGGER=swo``\ : Use dedicated SWO pin of ARM Cortex SWD debug header. |
| |
| * Cons: only work with ARM Cortex MCUs minus M0 |
| * Pros: should be compatible with more debugger that support SWO. |
| * Software viewer should be provided along with your debugger driver. |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express LOG=2 LOGGER=rtt all |
| $ make BOARD=feather_nrf52840_express LOG=2 LOGGER=swo all |
| |
| Flash |
| ^^^^^ |
| |
| ``flash`` target will use the default on-board debugger (jlink/cmsisdap/stlink/dfu) to flash the binary, please install those support software in advance. Some board use bootloader/DFU via serial which is required to pass to make command |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express flash |
| $ make SERIAL=/dev/ttyACM0 BOARD=feather_nrf52840_express flash |
| |
| Since jlink can be used with most of the boards, there is also ``flash-jlink`` target for your convenience. |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express flash-jlink |
| |
| Some board use uf2 bootloader for drag & drop in to mass storage device, uf2 can be generated with ``uf2`` target |
| |
| .. code-block:: |
| |
| $ make BOARD=feather_nrf52840_express all uf2 |
| |
| IAR Support |
| ^^^^^^^^^^^ |
| |
| IAR Project Connection files are provided to import TinyUSB stack into your project. |
| |
| * A buldable project of your MCU need to be created in advance. |
| |
| |
| * Take example of STM32F0: |
| |
| - You need `stm32l0xx.h`, `startup_stm32f0xx.s`, `system_stm32f0xx.c`. |
| |
| - `STM32L0xx_HAL_Driver` is only needed to run examples, TinyUSB stack itself doesn't rely on MCU's SDKs. |
| |
| * Open `Tools -> Configure Custom Argument Variables` (Switch to `Global` tab if you want to do it for all your projects) |
| Click `New Group ...`, name it to `TUSB`, Click `Add Variable ...`, name it to `TUSB_DIR`, change it's value to the path of your TinyUSB stack, |
| for example `C:\\tinyusb` |
| |
| Import stack only |
| ~~~~~~~~~~~~~~~~~ |
| |
| 1. Open `Project -> Add project Connection ...`, click `OK`, choose `tinyusb\\tools\\iar_template.ipcf`. |
| |
| Run examples |
| ~~~~~~~~~~~~ |
| |
| 1. (Python3 is needed) Run `iar_gen.py` to generate .ipcf files of examples: |
| |
| .. code-block:: |
| |
| cd C:\tinyusb\tools |
| python iar_gen.py |
| |
| 2. Open `Project -> Add project Connection ...`, click `OK`, choose `tinyusb\\examples\\(.ipcf of example)`. |
| For example `C:\\tinyusb\\examples\\device\\cdc_msc\\iar_cdc_msc.ipcf` |