| #include "frc971/zeroing/zeroing.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| #include <vector> |
| |
| #include "frc971/zeroing/wrap.h" |
| |
| |
| namespace frc971 { |
| namespace zeroing { |
| namespace { |
| |
| bool compare_encoder(const PotAndAbsolutePosition &left, |
| const PotAndAbsolutePosition &right) { |
| return left.encoder < right.encoder; |
| } |
| |
| } // namespace |
| |
| PotAndIndexPulseZeroingEstimator::PotAndIndexPulseZeroingEstimator( |
| const constants::PotAndIndexPulseZeroingConstants &constants) |
| : constants_(constants) { |
| start_pos_samples_.reserve(constants_.average_filter_size); |
| Reset(); |
| } |
| |
| |
| void PotAndIndexPulseZeroingEstimator::Reset() { |
| samples_idx_ = 0; |
| offset_ = 0; |
| start_pos_samples_.clear(); |
| zeroed_ = false; |
| wait_for_index_pulse_ = true; |
| last_used_index_pulse_count_ = 0; |
| first_start_pos_ = 0.0; |
| error_ = false; |
| } |
| |
| void PotAndIndexPulseZeroingEstimator::TriggerError() { |
| if (!error_) { |
| LOG(ERROR, "Manually triggered zeroing error.\n"); |
| error_ = true; |
| } |
| } |
| |
| double PotAndIndexPulseZeroingEstimator::CalculateStartPosition( |
| double start_average, double latched_encoder) const { |
| // We calculate an aproximation of the value of the last index position. |
| // Also account for index pulses not lining up with integer multiples of the |
| // index_diff. |
| double index_pos = |
| start_average + latched_encoder - constants_.measured_index_position; |
| // We round index_pos to the closest valid value of the index. |
| double accurate_index_pos = (round(index_pos / constants_.index_difference)) * |
| constants_.index_difference; |
| // Now we reverse the first calculation to get the accurate start position. |
| return accurate_index_pos - latched_encoder + |
| constants_.measured_index_position; |
| } |
| |
| void PotAndIndexPulseZeroingEstimator::UpdateEstimate( |
| const PotAndIndexPosition &info) { |
| // We want to make sure that we encounter at least one index pulse while |
| // zeroing. So we take the index pulse count from the first sample after |
| // reset and wait for that count to change before we consider ourselves |
| // zeroed. |
| if (wait_for_index_pulse_) { |
| last_used_index_pulse_count_ = info.index_pulses; |
| wait_for_index_pulse_ = false; |
| } |
| |
| if (start_pos_samples_.size() < constants_.average_filter_size) { |
| start_pos_samples_.push_back(info.pot - info.encoder); |
| } else { |
| start_pos_samples_[samples_idx_] = info.pot - info.encoder; |
| } |
| |
| // Drop the oldest sample when we run this function the next time around. |
| samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size; |
| |
| double sample_sum = 0.0; |
| |
| for (size_t i = 0; i < start_pos_samples_.size(); ++i) { |
| sample_sum += start_pos_samples_[i]; |
| } |
| |
| // Calculates the average of the starting position. |
| double start_average = sample_sum / start_pos_samples_.size(); |
| |
| // If there are no index pulses to use or we don't have enough samples yet to |
| // have a well-filtered starting position then we use the filtered value as |
| // our best guess. |
| if (!zeroed_ && |
| (info.index_pulses == last_used_index_pulse_count_ || !offset_ready())) { |
| offset_ = start_average; |
| } else if (!zeroed_ || last_used_index_pulse_count_ != info.index_pulses) { |
| // Note the accurate start position and the current index pulse count so |
| // that we only run this logic once per index pulse. That should be more |
| // resilient to corrupted intermediate data. |
| offset_ = CalculateStartPosition(start_average, info.latched_encoder); |
| last_used_index_pulse_count_ = info.index_pulses; |
| |
| // TODO(austin): Reject encoder positions which have x% error rather than |
| // rounding to the closest index pulse. |
| |
| // Save the first starting position. |
| if (!zeroed_) { |
| first_start_pos_ = offset_; |
| LOG(INFO, "latching start position %f\n", first_start_pos_); |
| } |
| |
| // Now that we have an accurate starting position we can consider ourselves |
| // zeroed. |
| zeroed_ = true; |
| // Throw an error if first_start_pos is bigger/smaller than |
| // constants_.allowable_encoder_error * index_diff + start_pos. |
| if (::std::abs(first_start_pos_ - offset_) > |
| constants_.allowable_encoder_error * constants_.index_difference) { |
| if (!error_) { |
| LOG(ERROR, |
| "Encoder ticks out of range since last index pulse. first start " |
| "position: %f recent starting position: %f, allowable error: %f\n", |
| first_start_pos_, offset_, |
| constants_.allowable_encoder_error * constants_.index_difference); |
| error_ = true; |
| } |
| } |
| } |
| |
| position_ = offset_ + info.encoder; |
| filtered_position_ = start_average + info.encoder; |
| } |
| |
| PotAndIndexPulseZeroingEstimator::State |
| PotAndIndexPulseZeroingEstimator::GetEstimatorState() const { |
| State r; |
| r.error = error_; |
| r.zeroed = zeroed_; |
| r.position = position_; |
| r.pot_position = filtered_position_; |
| return r; |
| } |
| |
| |
| PotAndAbsEncoderZeroingEstimator::PotAndAbsEncoderZeroingEstimator( |
| const constants::PotAndAbsoluteEncoderZeroingConstants &constants) |
| : constants_(constants) { |
| relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size); |
| offset_samples_.reserve(constants_.average_filter_size); |
| Reset(); |
| } |
| |
| void PotAndAbsEncoderZeroingEstimator::Reset() { |
| zeroed_ = false; |
| relative_to_absolute_offset_samples_.clear(); |
| offset_samples_.clear(); |
| buffered_samples_.clear(); |
| } |
| |
| // So, this needs to be a multistep process. We need to first estimate the |
| // offset between the absolute encoder and the relative encoder. That process |
| // should get us an absolute number which is off by integer multiples of the |
| // distance/rev. In parallel, we can estimate the offset between the pot and |
| // encoder. When both estimates have converged, we can then compute the offset |
| // in a cycle, and which cycle, which gives us the accurate global offset. |
| // |
| // It's tricky to compute the offset between the absolute and relative encoder. |
| // We need to compute this inside 1 revolution. The easiest way to do this |
| // would be to wrap the encoder, subtract the two of them, and then average the |
| // result. That will struggle when they are off by PI. Instead, we need to |
| // wrap the number to +- PI from the current averaged offset. |
| // |
| // To guard against the robot moving while updating estimates, buffer a number |
| // of samples and check that the buffered samples are not different than the |
| // zeroing threshold. At any point that the samples differ too much, do not |
| // update estimates based on those samples. |
| void PotAndAbsEncoderZeroingEstimator::UpdateEstimate( |
| const PotAndAbsolutePosition &info) { |
| // Check for Abs Encoder NaN value that would mess up the rest of the zeroing |
| // code below. NaN values are given when the Absolute Encoder is disconnected. |
| if (::std::isnan(info.absolute_encoder)) { |
| error_ = true; |
| return; |
| } |
| |
| bool moving = true; |
| if (buffered_samples_.size() < constants_.moving_buffer_size) { |
| // Not enough samples to start determining if the robot is moving or not, |
| // don't use the samples yet. |
| buffered_samples_.push_back(info); |
| } else { |
| // Have enough samples to start determining if the robot is moving or not. |
| buffered_samples_[buffered_samples_idx_] = info; |
| auto max_value = |
| ::std::max_element(buffered_samples_.begin(), buffered_samples_.end(), |
| compare_encoder) |
| ->encoder; |
| auto min_value = |
| ::std::min_element(buffered_samples_.begin(), buffered_samples_.end(), |
| compare_encoder) |
| ->encoder; |
| if (::std::abs(max_value - min_value) < constants_.zeroing_threshold) { |
| // Robot isn't moving, use middle sample to determine offsets. |
| moving = false; |
| } |
| } |
| buffered_samples_idx_ = |
| (buffered_samples_idx_ + 1) % constants_.moving_buffer_size; |
| |
| if (!moving) { |
| // The robot is not moving, use the middle sample to determine offsets. |
| const int middle_index = |
| (buffered_samples_idx_ + (constants_.moving_buffer_size - 1) / 2) % |
| constants_.moving_buffer_size; |
| |
| // Compute the sum of all the offset samples. |
| double relative_to_absolute_offset_sum = 0.0; |
| for (size_t i = 0; i < relative_to_absolute_offset_samples_.size(); ++i) { |
| relative_to_absolute_offset_sum += |
| relative_to_absolute_offset_samples_[i]; |
| } |
| |
| // Compute the average offset between the absolute encoder and relative |
| // encoder. If we have 0 samples, assume it is 0. |
| double average_relative_to_absolute_offset = |
| relative_to_absolute_offset_samples_.size() == 0 |
| ? 0.0 |
| : relative_to_absolute_offset_sum / |
| relative_to_absolute_offset_samples_.size(); |
| |
| // Now, compute the nearest absolute encoder value to the offset relative |
| // encoder position. |
| const double adjusted_absolute_encoder = |
| Wrap(buffered_samples_[middle_index].encoder + |
| average_relative_to_absolute_offset, |
| buffered_samples_[middle_index].absolute_encoder - |
| constants_.measured_absolute_position, |
| constants_.one_revolution_distance); |
| |
| const double relative_to_absolute_offset = |
| adjusted_absolute_encoder - buffered_samples_[middle_index].encoder; |
| |
| // Add the sample and update the average with the new reading. |
| const size_t relative_to_absolute_offset_samples_size = |
| relative_to_absolute_offset_samples_.size(); |
| if (relative_to_absolute_offset_samples_size < |
| constants_.average_filter_size) { |
| average_relative_to_absolute_offset = |
| (average_relative_to_absolute_offset * |
| relative_to_absolute_offset_samples_size + |
| relative_to_absolute_offset) / |
| (relative_to_absolute_offset_samples_size + 1); |
| |
| relative_to_absolute_offset_samples_.push_back( |
| relative_to_absolute_offset); |
| } else { |
| average_relative_to_absolute_offset -= |
| relative_to_absolute_offset_samples_[samples_idx_] / |
| relative_to_absolute_offset_samples_size; |
| relative_to_absolute_offset_samples_[samples_idx_] = |
| relative_to_absolute_offset; |
| average_relative_to_absolute_offset += |
| relative_to_absolute_offset / |
| relative_to_absolute_offset_samples_size; |
| } |
| |
| // Now compute the offset between the pot and relative encoder. |
| if (offset_samples_.size() < constants_.average_filter_size) { |
| offset_samples_.push_back(buffered_samples_[middle_index].pot - |
| buffered_samples_[middle_index].encoder); |
| } else { |
| offset_samples_[samples_idx_] = buffered_samples_[middle_index].pot - |
| buffered_samples_[middle_index].encoder; |
| } |
| |
| // Drop the oldest sample when we run this function the next time around. |
| samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size; |
| |
| double pot_relative_encoder_offset_sum = 0.0; |
| for (size_t i = 0; i < offset_samples_.size(); ++i) { |
| pot_relative_encoder_offset_sum += offset_samples_[i]; |
| } |
| pot_relative_encoder_offset_ = |
| pot_relative_encoder_offset_sum / offset_samples_.size(); |
| |
| offset_ = Wrap(buffered_samples_[middle_index].encoder + |
| pot_relative_encoder_offset_, |
| average_relative_to_absolute_offset + |
| buffered_samples_[middle_index].encoder, |
| constants_.one_revolution_distance) - |
| buffered_samples_[middle_index].encoder; |
| if (offset_ready()) { |
| zeroed_ = true; |
| } |
| } |
| |
| // Update the position. |
| filtered_position_ = pot_relative_encoder_offset_ + info.encoder; |
| position_ = offset_ + info.encoder; |
| } |
| |
| PotAndAbsEncoderZeroingEstimator::State |
| PotAndAbsEncoderZeroingEstimator::GetEstimatorState() const { |
| State r; |
| r.error = error_; |
| r.zeroed = zeroed_; |
| r.position = position_; |
| r.pot_position = filtered_position_; |
| return r; |
| } |
| |
| void PulseIndexZeroingEstimator::Reset() { |
| max_index_position_ = ::std::numeric_limits<double>::lowest(); |
| min_index_position_ = ::std::numeric_limits<double>::max(); |
| offset_ = 0; |
| last_used_index_pulse_count_ = 0; |
| zeroed_ = false; |
| error_ = false; |
| } |
| |
| void PulseIndexZeroingEstimator::StoreIndexPulseMaxAndMin( |
| const IndexPosition &info) { |
| // If we have a new index pulse. |
| if (last_used_index_pulse_count_ != info.index_pulses) { |
| // If the latest pulses's position is outside the range we've currently |
| // seen, record it appropriately. |
| if (info.latched_encoder > max_index_position_) { |
| max_index_position_ = info.latched_encoder; |
| } |
| if (info.latched_encoder < min_index_position_) { |
| min_index_position_ = info.latched_encoder; |
| } |
| last_used_index_pulse_count_ = info.index_pulses; |
| } |
| } |
| |
| int PulseIndexZeroingEstimator::IndexPulseCount() { |
| if (min_index_position_ > max_index_position_) { |
| // This condition means we haven't seen a pulse yet. |
| return 0; |
| } |
| |
| // Calculate the number of pulses encountered so far. |
| return 1 + static_cast<int>( |
| ::std::round((max_index_position_ - min_index_position_) / |
| constants_.index_difference)); |
| } |
| |
| void PulseIndexZeroingEstimator::UpdateEstimate(const IndexPosition &info) { |
| StoreIndexPulseMaxAndMin(info); |
| const int index_pulse_count = IndexPulseCount(); |
| if (index_pulse_count > constants_.index_pulse_count) { |
| error_ = true; |
| } |
| |
| // TODO(austin): Detect if the encoder or index pulse is unplugged. |
| // TODO(austin): Detect missing counts. |
| |
| if (index_pulse_count == constants_.index_pulse_count && !zeroed_) { |
| offset_ = constants_.measured_index_position - |
| constants_.known_index_pulse * constants_.index_difference - |
| min_index_position_; |
| zeroed_ = true; |
| } |
| if (zeroed_) { |
| position_ = info.encoder + offset_; |
| } |
| } |
| |
| } // namespace zeroing |
| } // namespace frc971 |