blob: 1c29157552fd8bb078d9d74838fde7829c82787a [file] [log] [blame]
#include "y2018/control_loops/superstructure/arm/arm.h"
#include <chrono>
#include <iostream>
#include "aos/logging/logging.h"
#include "y2018/constants.h"
#include "y2018/control_loops/superstructure/arm/demo_path.h"
#include "y2018/control_loops/superstructure/arm/dynamics.h"
#include "y2018/control_loops/superstructure/arm/generated_graph.h"
namespace y2018 {
namespace control_loops {
namespace superstructure {
namespace arm {
namespace {
namespace chrono = ::std::chrono;
using ::aos::monotonic_clock;
constexpr int kMaxBrownoutCount = 4;
} // namespace
Arm::Arm()
: proximal_zeroing_estimator_(constants::GetValues().arm_proximal.zeroing),
distal_zeroing_estimator_(constants::GetValues().arm_distal.zeroing),
alpha_unitizer_((::Eigen::Matrix<double, 2, 2>() << 1.0 / kAlpha0Max(),
0.0, 0.0, 1.0 / kAlpha1Max())
.finished()),
search_graph_(MakeSearchGraph(&trajectories_, alpha_unitizer_, kVMax())),
// Go to the start of the first trajectory.
follower_(ReadyAboveBoxPoint()),
points_(PointList()) {
int i = 0;
for (const auto &trajectory : trajectories_) {
AOS_LOG(INFO, "trajectory length for edge node %d: %f\n", i,
trajectory.trajectory.path().length());
++i;
}
}
void Arm::Reset() { state_ = State::UNINITIALIZED; }
flatbuffers::Offset<superstructure::ArmStatus> Arm::Iterate(
const ::aos::monotonic_clock::time_point monotonic_now,
const uint32_t *unsafe_goal, bool grab_box, bool open_claw, bool close_claw,
const superstructure::ArmPosition *position,
const bool claw_beambreak_triggered,
const bool box_back_beambreak_triggered, const bool intake_clear_of_box,
bool suicide, bool trajectory_override, double *proximal_output,
double *distal_output, bool *release_arm_brake, bool *claw_closed,
flatbuffers::FlatBufferBuilder *fbb) {
::Eigen::Matrix<double, 2, 1> Y;
const bool outputs_disabled =
((proximal_output == nullptr) || (distal_output == nullptr) ||
(release_arm_brake == nullptr) || (claw_closed == nullptr));
if (outputs_disabled) {
++brownout_count_;
} else {
brownout_count_ = 0;
}
uint32_t filtered_goal = 0;
if (unsafe_goal != nullptr) {
filtered_goal = *unsafe_goal;
}
if (open_claw) {
claw_closed_ = false;
}
if (close_claw) {
claw_closed_ = true;
}
if (outputs_disabled) {
if (claw_closed_count_ == 0) {
claw_closed_ = true;
} else {
--claw_closed_count_;
}
} else {
// Wait this many iterations before closing the claw. That prevents
// brownouts from closing the claw.
claw_closed_count_ = 50;
}
Y << position->proximal()->encoder() + proximal_offset_,
position->distal()->encoder() + distal_offset_;
proximal_zeroing_estimator_.UpdateEstimate(*position->proximal());
distal_zeroing_estimator_.UpdateEstimate(*position->distal());
if (proximal_output != nullptr) {
*proximal_output = 0.0;
}
if (distal_output != nullptr) {
*distal_output = 0.0;
}
arm_ekf_.Correct(Y, kDt());
if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) <= 0.05 &&
::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) <= 0.05) {
close_enough_for_full_power_ = true;
}
if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) >= 1.10 ||
::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) >= 1.10) {
close_enough_for_full_power_ = false;
}
switch (state_) {
case State::UNINITIALIZED:
// Wait in the uninitialized state until the intake is initialized.
AOS_LOG(DEBUG, "Uninitialized, waiting for intake\n");
state_ = State::ZEROING;
proximal_zeroing_estimator_.Reset();
distal_zeroing_estimator_.Reset();
break;
case State::ZEROING:
// Zero by not moving.
if (proximal_zeroing_estimator_.zeroed() &&
distal_zeroing_estimator_.zeroed()) {
state_ = State::DISABLED;
proximal_offset_ = proximal_zeroing_estimator_.offset();
distal_offset_ = distal_zeroing_estimator_.offset();
Y << position->proximal()->encoder() + proximal_offset_,
position->distal()->encoder() + distal_offset_;
// TODO(austin): Offset ekf rather than reset it. Since we aren't
// moving at this point, it's pretty safe to do this.
::Eigen::Matrix<double, 4, 1> X;
X << Y(0), 0.0, Y(1), 0.0;
arm_ekf_.Reset(X);
} else {
break;
}
[[fallthrough]];
case State::DISABLED: {
follower_.SwitchTrajectory(nullptr);
close_enough_for_full_power_ = false;
const ::Eigen::Matrix<double, 2, 1> current_theta =
(::Eigen::Matrix<double, 2, 1>() << arm_ekf_.X_hat(0),
arm_ekf_.X_hat(2))
.finished();
uint32_t best_index = 0;
double best_distance = (points_[0] - current_theta).norm();
uint32_t current_index = 0;
for (const ::Eigen::Matrix<double, 2, 1> &point : points_) {
const double new_distance = (point - current_theta).norm();
if (new_distance < best_distance) {
best_distance = new_distance;
best_index = current_index;
}
++current_index;
}
follower_.set_theta(points_[best_index]);
current_node_ = best_index;
if (!outputs_disabled) {
state_ = State::GOTO_PATH;
} else {
break;
}
}
[[fallthrough]];
case State::GOTO_PATH:
if (outputs_disabled) {
state_ = State::DISABLED;
} else if (trajectory_override) {
follower_.SwitchTrajectory(nullptr);
current_node_ = filtered_goal;
follower_.set_theta(points_[current_node_]);
state_ = State::GOTO_PATH;
} else if (close_enough_for_full_power_) {
state_ = State::RUNNING;
grab_state_ = GrabState::NORMAL;
}
break;
case State::RUNNING:
// ESTOP if we hit the hard limits.
// TODO(austin): Pick some sane limits.
if (proximal_zeroing_estimator_.error() ||
distal_zeroing_estimator_.error()) {
AOS_LOG(ERROR, "Zeroing error ESTOP\n");
state_ = State::ESTOP;
} else if (outputs_disabled && brownout_count_ > kMaxBrownoutCount) {
state_ = State::DISABLED;
} else if (trajectory_override) {
follower_.SwitchTrajectory(nullptr);
current_node_ = filtered_goal;
follower_.set_theta(points_[current_node_]);
state_ = State::GOTO_PATH;
} else if (suicide) {
state_ = State::PREP_CLIMB;
climb_count_ = 50;
}
break;
case State::PREP_CLIMB:
--climb_count_;
if (climb_count_ <= 0) {
state_ = State::ESTOP;
} else if (!suicide) {
state_ = State::RUNNING;
}
break;
case State::ESTOP:
AOS_LOG(ERROR, "Estop\n");
break;
}
const bool disable = outputs_disabled || (state_ != State::RUNNING &&
state_ != State::GOTO_PATH &&
state_ != State::PREP_CLIMB);
if (disable) {
close_enough_for_full_power_ = false;
}
// TODO(austin): Do we need to debounce box_back_beambreak_triggered ?
if (claw_closed_) {
if ((filtered_goal == ReadyAboveBoxIndex()) ||
(filtered_goal == TallBoxGrabIndex()) ||
(filtered_goal == ShortBoxGrabIndex())) {
filtered_goal = NeutralIndex();
}
}
// TODO(austin): Do we need to debounce box_back_beambreak_triggered ?
switch (grab_state_) {
case GrabState::NORMAL:
if (grab_box && !claw_closed_) {
grab_state_ = GrabState::WAIT_FOR_BOX;
} else {
break;
}
case GrabState::WAIT_FOR_BOX:
if (!grab_box) {
grab_state_ = GrabState::NORMAL;
} else {
if (AtState(ReadyAboveBoxIndex()) && NearEnd()) {
// We are being asked to grab the box, and the claw is near the box.
if (box_back_beambreak_triggered) {
// And we now see the box! Try for a tall box.
grab_state_ = GrabState::TALL_BOX;
}
}
}
break;
case GrabState::TALL_BOX:
if (!grab_box) {
grab_state_ = GrabState::NORMAL;
} else if (AtState(TallBoxGrabIndex()) && NearEnd()) {
// We are being asked to grab the box, and the claw is near the box.
if (claw_beambreak_triggered) {
grab_state_ = GrabState::CLAW_CLOSE;
// Snap time for the delay here.
claw_close_start_time_ = monotonic_now;
} else {
grab_state_ = GrabState::SHORT_BOX;
}
}
break;
case GrabState::SHORT_BOX:
if (!grab_box) {
grab_state_ = GrabState::NORMAL;
} else if (AtState(ShortBoxGrabIndex()) && NearEnd()) {
// We are being asked to grab the box, and the claw is near the box.
if (claw_beambreak_triggered) {
grab_state_ = GrabState::CLAW_CLOSE;
// Snap time for the delay here.
claw_close_start_time_ = monotonic_now;
} else {
grab_state_ = GrabState::WAIT_FOR_BOX;
}
}
break;
case GrabState::CLAW_CLOSE:
if (monotonic_now >
claw_close_start_time_ + ::std::chrono::milliseconds(300)) {
grab_state_ = GrabState::OPEN_INTAKE;
}
break;
case GrabState::OPEN_INTAKE:
if (intake_clear_of_box) {
grab_state_ = GrabState::NORMAL;
}
break;
}
// Now, based out our current state, go to the right state.
switch (grab_state_) {
case GrabState::NORMAL:
// Don't let the intake close fully with the claw closed.
// TODO(austin): If we want to transfer the box from the claw to the
// intake, we'll need to change this.
if (claw_closed_) {
max_intake_override_ = -0.5;
} else {
max_intake_override_ = 1000.0;
}
break;
case GrabState::WAIT_FOR_BOX:
filtered_goal = ReadyAboveBoxIndex();
claw_closed_ = false;
max_intake_override_ = 1000.0;
break;
case GrabState::TALL_BOX:
filtered_goal = TallBoxGrabIndex();
claw_closed_ = false;
max_intake_override_ = 1000.0;
break;
case GrabState::SHORT_BOX:
filtered_goal = ShortBoxGrabIndex();
claw_closed_ = false;
max_intake_override_ = 1000.0;
break;
case GrabState::CLAW_CLOSE:
// Don't move.
filtered_goal = current_node_;
claw_closed_ = true;
max_intake_override_ = 1000.0;
break;
case GrabState::OPEN_INTAKE:
// Don't move.
filtered_goal = current_node_;
claw_closed_ = true;
max_intake_override_ = -0.5;
break;
}
if (state_ == State::RUNNING && unsafe_goal != nullptr) {
if (current_node_ != filtered_goal) {
AOS_LOG(INFO, "Goal is different\n");
if (filtered_goal >= search_graph_.num_vertexes()) {
AOS_LOG(ERROR, "goal node out of range ESTOP\n");
state_ = State::ESTOP;
} else if (follower_.path_distance_to_go() > 1e-3) {
// Still on the old path segment. Can't change yet.
} else {
search_graph_.SetGoal(filtered_goal);
size_t min_edge = 0;
double min_cost = ::std::numeric_limits<double>::infinity();
for (const SearchGraph::HalfEdge &edge :
search_graph_.Neighbors(current_node_)) {
const double cost = search_graph_.GetCostToGoal(edge.dest);
if (cost < min_cost) {
min_edge = edge.edge_id;
min_cost = cost;
}
}
// Ok, now we know which edge we are on. Figure out the path and
// trajectory.
const SearchGraph::Edge &next_edge = search_graph_.edges()[min_edge];
AOS_LOG(INFO, "Switching from node %d to %d along edge %d\n",
static_cast<int>(current_node_),
static_cast<int>(next_edge.end), static_cast<int>(min_edge));
vmax_ = trajectories_[min_edge].vmax;
follower_.SwitchTrajectory(&trajectories_[min_edge].trajectory);
current_node_ = next_edge.end;
}
}
}
const double max_operating_voltage =
close_enough_for_full_power_
? kOperatingVoltage()
: (state_ == State::GOTO_PATH ? kGotoPathVMax() : kPathlessVMax());
follower_.Update(arm_ekf_.X_hat(), disable, kDt(), vmax_,
max_operating_voltage);
AOS_LOG(INFO, "Max voltage: %f\n", max_operating_voltage);
flatbuffers::Offset<frc971::PotAndAbsoluteEncoderEstimatorState>
proximal_estimator_state_offset =
proximal_zeroing_estimator_.GetEstimatorState(fbb);
flatbuffers::Offset<frc971::PotAndAbsoluteEncoderEstimatorState>
distal_estimator_state_offset =
distal_zeroing_estimator_.GetEstimatorState(fbb);
superstructure::ArmStatus::Builder status_builder(*fbb);
status_builder.add_proximal_estimator_state(proximal_estimator_state_offset);
status_builder.add_distal_estimator_state(distal_estimator_state_offset);
status_builder.add_goal_theta0(follower_.theta(0));
status_builder.add_goal_theta1(follower_.theta(1));
status_builder.add_goal_omega0(follower_.omega(0));
status_builder.add_goal_omega1(follower_.omega(1));
status_builder.add_theta0(arm_ekf_.X_hat(0));
status_builder.add_theta1(arm_ekf_.X_hat(2));
status_builder.add_omega0(arm_ekf_.X_hat(1));
status_builder.add_omega1(arm_ekf_.X_hat(3));
status_builder.add_voltage_error0(arm_ekf_.X_hat(4));
status_builder.add_voltage_error1(arm_ekf_.X_hat(5));
if (!disable) {
*proximal_output = ::std::max(
-kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(0)));
*distal_output = ::std::max(
-kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(1)));
if (state_ != State::PREP_CLIMB) {
*release_arm_brake = true;
} else {
*release_arm_brake = false;
}
*claw_closed = claw_closed_;
}
status_builder.add_path_distance_to_go(follower_.path_distance_to_go());
status_builder.add_current_node(current_node_);
status_builder.add_zeroed(zeroed());
status_builder.add_estopped(estopped());
status_builder.add_state(static_cast<int32_t>(state_));
status_builder.add_grab_state(static_cast<int32_t>(grab_state_));
status_builder.add_failed_solutions(follower_.failed_solutions());
arm_ekf_.Predict(follower_.U(), kDt());
return status_builder.Finish();
}
} // namespace arm
} // namespace superstructure
} // namespace control_loops
} // namespace y2018