blob: f65e75d8a841c6062ed220df6997e109d1996dc5 [file] [log] [blame]
#include "aos/events/simulated_event_loop.h"
#include <algorithm>
#include <deque>
#include "absl/container/btree_map.h"
#include "absl/container/btree_set.h"
#include "aos/json_to_flatbuffer.h"
#include "aos/util/phased_loop.h"
namespace aos {
// Container for both a message, and the context for it for simulation. This
// makes tracking the timestamps associated with the data easy.
struct SimulatedMessage {
// Struct to let us force data to be well aligned.
struct OveralignedChar {
char data alignas(32);
};
// Context for the data.
Context context;
// The data.
char *data() { return reinterpret_cast<char *>(&actual_data[0]); }
// Then the data.
OveralignedChar actual_data[];
};
class SimulatedFetcher;
class SimulatedChannel {
public:
explicit SimulatedChannel(const Channel *channel, EventScheduler *scheduler)
: channel_(CopyFlatBuffer(channel)),
scheduler_(scheduler),
next_queue_index_(ipc_lib::QueueIndex::Zero(channel->max_size())) {}
~SimulatedChannel() { CHECK_EQ(0u, fetchers_.size()); }
// Makes a connected raw sender which calls Send below.
::std::unique_ptr<RawSender> MakeRawSender(EventLoop *event_loop);
// Makes a connected raw fetcher.
::std::unique_ptr<RawFetcher> MakeRawFetcher();
// Registers a watcher for the queue.
void MakeRawWatcher(
::std::function<void(const Context &context, const void *message)>
watcher);
// Sends the message to all the connected receivers and fetchers.
void Send(std::shared_ptr<SimulatedMessage> message);
// Unregisters a fetcher.
void UnregisterFetcher(SimulatedFetcher *fetcher);
std::shared_ptr<SimulatedMessage> latest_message() { return latest_message_; }
size_t max_size() const { return channel_.message().max_size(); }
const absl::string_view name() const {
return channel_.message().name()->string_view();
}
const Channel *channel() const { return &channel_.message(); }
private:
const FlatbufferDetachedBuffer<Channel> channel_;
// List of all watchers.
::std::vector<
std::function<void(const Context &context, const void *message)>>
watchers_;
// List of all fetchers.
::std::vector<SimulatedFetcher *> fetchers_;
std::shared_ptr<SimulatedMessage> latest_message_;
EventScheduler *scheduler_;
ipc_lib::QueueIndex next_queue_index_;
};
namespace {
// Creates a SimulatedMessage with size bytes of storage.
// This is a shared_ptr so we don't have to implement refcounting or copying.
std::shared_ptr<SimulatedMessage> MakeSimulatedMessage(size_t size) {
SimulatedMessage *message = reinterpret_cast<SimulatedMessage *>(
malloc(sizeof(SimulatedMessage) + size));
message->context.size = size;
message->context.data = message->data();
return std::shared_ptr<SimulatedMessage>(message, free);
}
class SimulatedSender : public RawSender {
public:
SimulatedSender(SimulatedChannel *simulated_channel, EventLoop *event_loop)
: RawSender(simulated_channel->channel()),
simulated_channel_(simulated_channel),
event_loop_(event_loop) {}
~SimulatedSender() {}
void *data() override {
if (!message_) {
message_ = MakeSimulatedMessage(simulated_channel_->max_size());
}
return message_->data();
}
size_t size() override { return simulated_channel_->max_size(); }
bool Send(size_t length) override {
CHECK_LE(length, size()) << ": Attempting to send too big a message.";
message_->context.monotonic_sent_time = event_loop_->monotonic_now();
message_->context.realtime_sent_time = event_loop_->realtime_now();
CHECK_LE(length, message_->context.size);
message_->context.size = length;
// TODO(austin): Track sending too fast.
simulated_channel_->Send(message_);
// Drop the reference to the message so that we allocate a new message for
// next time. Otherwise we will continue to reuse the same memory for all
// messages and corrupt it.
message_.reset();
return true;
}
bool Send(const void *msg, size_t size) override {
CHECK_LE(size, this->size()) << ": Attempting to send too big a message.";
// This is wasteful, but since flatbuffers fill from the back end of the
// queue, we need it to be full sized.
message_ = MakeSimulatedMessage(simulated_channel_->max_size());
// Now fill in the message. size is already populated above, and
// queue_index will be populated in queue_. Put this at the back of the
// data segment.
memcpy(message_->data() + simulated_channel_->max_size() - size, msg, size);
return Send(size);
}
const std::string_view name() const override {
return simulated_channel_->name();
}
private:
SimulatedChannel *simulated_channel_;
EventLoop *event_loop_;
std::shared_ptr<SimulatedMessage> message_;
};
} // namespace
class SimulatedFetcher : public RawFetcher {
public:
explicit SimulatedFetcher(SimulatedChannel *queue)
: RawFetcher(queue->channel()), queue_(queue) {}
~SimulatedFetcher() { queue_->UnregisterFetcher(this); }
bool FetchNext() override {
if (msgs_.size() == 0) return false;
SetMsg(msgs_.front());
msgs_.pop_front();
return true;
}
bool Fetch() override {
if (msgs_.size() == 0) {
if (!msg_ && queue_->latest_message()) {
SetMsg(queue_->latest_message());
return true;
} else {
return false;
}
}
// We've had a message enqueued, so we don't need to go looking for the
// latest message from before we started.
SetMsg(msgs_.back());
msgs_.clear();
return true;
}
private:
friend class SimulatedChannel;
// Updates the state inside RawFetcher to point to the data in msg_.
void SetMsg(std::shared_ptr<SimulatedMessage> msg) {
msg_ = msg;
data_ = msg_->context.data;
context_ = msg_->context;
}
// Internal method for Simulation to add a message to the buffer.
void Enqueue(std::shared_ptr<SimulatedMessage> buffer) {
msgs_.emplace_back(buffer);
}
SimulatedChannel *queue_;
std::shared_ptr<SimulatedMessage> msg_;
// Messages queued up but not in use.
::std::deque<std::shared_ptr<SimulatedMessage>> msgs_;
};
class SimulatedTimerHandler : public TimerHandler {
public:
explicit SimulatedTimerHandler(EventScheduler *scheduler,
::std::function<void()> fn)
: scheduler_(scheduler), token_(scheduler_->InvalidToken()), fn_(fn) {}
~SimulatedTimerHandler() {}
void Setup(monotonic_clock::time_point base,
monotonic_clock::duration repeat_offset) override {
Disable();
const ::aos::monotonic_clock::time_point monotonic_now =
scheduler_->monotonic_now();
base_ = base;
repeat_offset_ = repeat_offset;
if (base < monotonic_now) {
token_ = scheduler_->Schedule(monotonic_now, [this]() { HandleEvent(); });
} else {
token_ = scheduler_->Schedule(base, [this]() { HandleEvent(); });
}
}
void HandleEvent() {
const ::aos::monotonic_clock::time_point monotonic_now =
scheduler_->monotonic_now();
if (repeat_offset_ != ::aos::monotonic_clock::zero()) {
// Reschedule.
while (base_ <= monotonic_now) base_ += repeat_offset_;
token_ = scheduler_->Schedule(base_, [this]() { HandleEvent(); });
} else {
token_ = scheduler_->InvalidToken();
}
fn_();
}
void Disable() override {
if (token_ != scheduler_->InvalidToken()) {
scheduler_->Deschedule(token_);
token_ = scheduler_->InvalidToken();
}
}
::aos::monotonic_clock::time_point monotonic_now() const {
return scheduler_->monotonic_now();
}
private:
EventScheduler *scheduler_;
EventScheduler::Token token_;
// Function to be run on the thread
::std::function<void()> fn_;
monotonic_clock::time_point base_;
monotonic_clock::duration repeat_offset_;
};
class SimulatedPhasedLoopHandler : public PhasedLoopHandler {
public:
SimulatedPhasedLoopHandler(EventScheduler *scheduler,
::std::function<void(int)> fn,
const monotonic_clock::duration interval,
const monotonic_clock::duration offset)
: simulated_timer_handler_(scheduler, [this]() { HandleTimerWakeup(); }),
phased_loop_(interval, simulated_timer_handler_.monotonic_now(),
offset),
fn_(fn) {
// TODO(austin): This assumes time doesn't change between when the
// constructor is called and when we start running. It's probably a safe
// assumption.
Reschedule();
}
void HandleTimerWakeup() {
fn_(cycles_elapsed_);
Reschedule();
}
void set_interval_and_offset(
const monotonic_clock::duration interval,
const monotonic_clock::duration offset) override {
phased_loop_.set_interval_and_offset(interval, offset);
}
void Reschedule() {
cycles_elapsed_ =
phased_loop_.Iterate(simulated_timer_handler_.monotonic_now());
simulated_timer_handler_.Setup(phased_loop_.sleep_time(),
::aos::monotonic_clock::zero());
}
private:
SimulatedTimerHandler simulated_timer_handler_;
time::PhasedLoop phased_loop_;
int cycles_elapsed_ = 1;
::std::function<void(int)> fn_;
};
class SimulatedEventLoop : public EventLoop {
public:
explicit SimulatedEventLoop(
EventScheduler *scheduler,
absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>>
*channels,
const Configuration *configuration,
std::vector<std::pair<EventLoop *, std::function<void(bool)>>>
*raw_event_loops)
: EventLoop(configuration),
scheduler_(scheduler),
channels_(channels),
raw_event_loops_(raw_event_loops) {
raw_event_loops_->push_back(
std::make_pair(this, [this](bool value) { set_is_running(value); }));
}
~SimulatedEventLoop() override {
for (auto it = raw_event_loops_->begin(); it != raw_event_loops_->end();
++it) {
if (it->first == this) {
raw_event_loops_->erase(it);
break;
}
}
}
::aos::monotonic_clock::time_point monotonic_now() override {
return scheduler_->monotonic_now();
}
::aos::realtime_clock::time_point realtime_now() override {
return scheduler_->realtime_now();
}
::std::unique_ptr<RawSender> MakeRawSender(const Channel *channel) override;
::std::unique_ptr<RawFetcher> MakeRawFetcher(const Channel *channel) override;
void MakeRawWatcher(
const Channel *channel,
::std::function<void(const Context &context, const void *message)>
watcher) override;
TimerHandler *AddTimer(::std::function<void()> callback) override {
timers_.emplace_back(new SimulatedTimerHandler(scheduler_, callback));
return timers_.back().get();
}
PhasedLoopHandler *AddPhasedLoop(::std::function<void(int)> callback,
const monotonic_clock::duration interval,
const monotonic_clock::duration offset =
::std::chrono::seconds(0)) override {
phased_loops_.emplace_back(
new SimulatedPhasedLoopHandler(scheduler_, callback, interval, offset));
return phased_loops_.back().get();
}
void OnRun(::std::function<void()> on_run) override {
scheduler_->Schedule(scheduler_->monotonic_now(), on_run);
}
void set_name(const std::string_view name) override {
name_ = std::string(name);
}
const std::string_view name() const override { return name_; }
SimulatedChannel *GetSimulatedChannel(const Channel *channel);
void Take(const Channel *channel);
void SetRuntimeRealtimePriority(int /*priority*/) override {
CHECK(!is_running()) << ": Cannot set realtime priority while running.";
}
private:
EventScheduler *scheduler_;
absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>> *channels_;
std::vector<std::pair<EventLoop *, std::function<void(bool)>>>
*raw_event_loops_;
absl::btree_set<SimpleChannel> taken_;
::std::vector<std::unique_ptr<TimerHandler>> timers_;
::std::vector<std::unique_ptr<PhasedLoopHandler>> phased_loops_;
::std::string name_;
};
void SimulatedEventLoop::MakeRawWatcher(
const Channel *channel,
std::function<void(const Context &channel, const void *message)> watcher) {
ValidateChannel(channel);
Take(channel);
GetSimulatedChannel(channel)->MakeRawWatcher(watcher);
}
std::unique_ptr<RawSender> SimulatedEventLoop::MakeRawSender(
const Channel *channel) {
ValidateChannel(channel);
Take(channel);
return GetSimulatedChannel(channel)->MakeRawSender(this);
}
std::unique_ptr<RawFetcher> SimulatedEventLoop::MakeRawFetcher(
const Channel *channel) {
ValidateChannel(channel);
return GetSimulatedChannel(channel)->MakeRawFetcher();
}
SimulatedChannel *SimulatedEventLoop::GetSimulatedChannel(
const Channel *channel) {
auto it = channels_->find(SimpleChannel(channel));
if (it == channels_->end()) {
it = channels_
->emplace(SimpleChannel(channel),
std::unique_ptr<SimulatedChannel>(
new SimulatedChannel(channel, scheduler_)))
.first;
}
return it->second.get();
}
void SimulatedChannel::MakeRawWatcher(
::std::function<void(const Context &context, const void *message)>
watcher) {
watchers_.push_back(watcher);
}
::std::unique_ptr<RawSender> SimulatedChannel::MakeRawSender(
EventLoop *event_loop) {
return ::std::unique_ptr<RawSender>(new SimulatedSender(this, event_loop));
}
::std::unique_ptr<RawFetcher> SimulatedChannel::MakeRawFetcher() {
::std::unique_ptr<SimulatedFetcher> fetcher(new SimulatedFetcher(this));
fetchers_.push_back(fetcher.get());
return ::std::move(fetcher);
}
void SimulatedChannel::Send(std::shared_ptr<SimulatedMessage> message) {
message->context.queue_index = next_queue_index_.index();
message->context.data =
message->data() + channel()->max_size() - message->context.size;
next_queue_index_ = next_queue_index_.Increment();
latest_message_ = message;
if (scheduler_->is_running()) {
for (auto &watcher : watchers_) {
scheduler_->Schedule(scheduler_->monotonic_now(), [watcher, message]() {
watcher(message->context, message->context.data);
});
}
}
for (auto &fetcher : fetchers_) {
fetcher->Enqueue(message);
}
}
void SimulatedChannel::UnregisterFetcher(SimulatedFetcher *fetcher) {
fetchers_.erase(::std::find(fetchers_.begin(), fetchers_.end(), fetcher));
}
SimpleChannel::SimpleChannel(const Channel *channel)
: name(CHECK_NOTNULL(CHECK_NOTNULL(channel)->name())->str()),
type(CHECK_NOTNULL(CHECK_NOTNULL(channel)->type())->str()) {}
void SimulatedEventLoop::Take(const Channel *channel) {
CHECK(!is_running()) << ": Cannot add new objects while running.";
auto result = taken_.insert(SimpleChannel(channel));
CHECK(result.second) << ": " << FlatbufferToJson(channel)
<< " is already being used.";
}
SimulatedEventLoopFactory::SimulatedEventLoopFactory(
const Configuration *configuration)
: configuration_(configuration) {}
SimulatedEventLoopFactory::~SimulatedEventLoopFactory() {}
::std::unique_ptr<EventLoop> SimulatedEventLoopFactory::MakeEventLoop() {
return ::std::unique_ptr<EventLoop>(new SimulatedEventLoop(
&scheduler_, &channels_, configuration_, &raw_event_loops_));
}
void SimulatedEventLoopFactory::RunFor(monotonic_clock::duration duration) {
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(true);
}
scheduler_.RunFor(duration);
if (!scheduler_.is_running()) {
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(false);
}
}
}
void SimulatedEventLoopFactory::Run() {
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(true);
}
scheduler_.Run();
if (!scheduler_.is_running()) {
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(false);
}
}
}
} // namespace aos