| #include "aos/events/simulated_event_loop.h" |
| |
| #include <algorithm> |
| #include <deque> |
| |
| #include "absl/container/btree_map.h" |
| #include "absl/container/btree_set.h" |
| #include "aos/json_to_flatbuffer.h" |
| #include "aos/util/phased_loop.h" |
| |
| namespace aos { |
| |
| // Container for both a message, and the context for it for simulation. This |
| // makes tracking the timestamps associated with the data easy. |
| struct SimulatedMessage { |
| // Struct to let us force data to be well aligned. |
| struct OveralignedChar { |
| char data alignas(32); |
| }; |
| |
| // Context for the data. |
| Context context; |
| |
| // The data. |
| char *data() { return reinterpret_cast<char *>(&actual_data[0]); } |
| |
| // Then the data. |
| OveralignedChar actual_data[]; |
| }; |
| |
| class SimulatedFetcher; |
| |
| class SimulatedChannel { |
| public: |
| explicit SimulatedChannel(const Channel *channel, EventScheduler *scheduler) |
| : channel_(CopyFlatBuffer(channel)), |
| scheduler_(scheduler), |
| next_queue_index_(ipc_lib::QueueIndex::Zero(channel->max_size())) {} |
| |
| ~SimulatedChannel() { CHECK_EQ(0u, fetchers_.size()); } |
| |
| // Makes a connected raw sender which calls Send below. |
| ::std::unique_ptr<RawSender> MakeRawSender(EventLoop *event_loop); |
| |
| // Makes a connected raw fetcher. |
| ::std::unique_ptr<RawFetcher> MakeRawFetcher(); |
| |
| // Registers a watcher for the queue. |
| void MakeRawWatcher( |
| ::std::function<void(const Context &context, const void *message)> |
| watcher); |
| |
| // Sends the message to all the connected receivers and fetchers. |
| void Send(std::shared_ptr<SimulatedMessage> message); |
| |
| // Unregisters a fetcher. |
| void UnregisterFetcher(SimulatedFetcher *fetcher); |
| |
| std::shared_ptr<SimulatedMessage> latest_message() { return latest_message_; } |
| |
| size_t max_size() const { return channel_.message().max_size(); } |
| |
| const absl::string_view name() const { |
| return channel_.message().name()->string_view(); |
| } |
| |
| const Channel *channel() const { return &channel_.message(); } |
| |
| private: |
| const FlatbufferDetachedBuffer<Channel> channel_; |
| |
| // List of all watchers. |
| ::std::vector< |
| std::function<void(const Context &context, const void *message)>> |
| watchers_; |
| |
| // List of all fetchers. |
| ::std::vector<SimulatedFetcher *> fetchers_; |
| std::shared_ptr<SimulatedMessage> latest_message_; |
| EventScheduler *scheduler_; |
| |
| ipc_lib::QueueIndex next_queue_index_; |
| }; |
| |
| namespace { |
| |
| // Creates a SimulatedMessage with size bytes of storage. |
| // This is a shared_ptr so we don't have to implement refcounting or copying. |
| std::shared_ptr<SimulatedMessage> MakeSimulatedMessage(size_t size) { |
| SimulatedMessage *message = reinterpret_cast<SimulatedMessage *>( |
| malloc(sizeof(SimulatedMessage) + size)); |
| message->context.size = size; |
| message->context.data = message->data(); |
| |
| return std::shared_ptr<SimulatedMessage>(message, free); |
| } |
| |
| class SimulatedSender : public RawSender { |
| public: |
| SimulatedSender(SimulatedChannel *simulated_channel, EventLoop *event_loop) |
| : RawSender(simulated_channel->channel()), |
| simulated_channel_(simulated_channel), |
| event_loop_(event_loop) {} |
| ~SimulatedSender() {} |
| |
| void *data() override { |
| if (!message_) { |
| message_ = MakeSimulatedMessage(simulated_channel_->max_size()); |
| } |
| return message_->data(); |
| } |
| |
| size_t size() override { return simulated_channel_->max_size(); } |
| |
| bool Send(size_t length) override { |
| CHECK_LE(length, size()) << ": Attempting to send too big a message."; |
| message_->context.monotonic_sent_time = event_loop_->monotonic_now(); |
| message_->context.realtime_sent_time = event_loop_->realtime_now(); |
| CHECK_LE(length, message_->context.size); |
| message_->context.size = length; |
| |
| // TODO(austin): Track sending too fast. |
| simulated_channel_->Send(message_); |
| |
| // Drop the reference to the message so that we allocate a new message for |
| // next time. Otherwise we will continue to reuse the same memory for all |
| // messages and corrupt it. |
| message_.reset(); |
| return true; |
| } |
| |
| bool Send(const void *msg, size_t size) override { |
| CHECK_LE(size, this->size()) << ": Attempting to send too big a message."; |
| |
| // This is wasteful, but since flatbuffers fill from the back end of the |
| // queue, we need it to be full sized. |
| message_ = MakeSimulatedMessage(simulated_channel_->max_size()); |
| |
| // Now fill in the message. size is already populated above, and |
| // queue_index will be populated in queue_. Put this at the back of the |
| // data segment. |
| memcpy(message_->data() + simulated_channel_->max_size() - size, msg, size); |
| |
| return Send(size); |
| } |
| |
| const std::string_view name() const override { |
| return simulated_channel_->name(); |
| } |
| |
| private: |
| SimulatedChannel *simulated_channel_; |
| EventLoop *event_loop_; |
| |
| std::shared_ptr<SimulatedMessage> message_; |
| }; |
| } // namespace |
| |
| class SimulatedFetcher : public RawFetcher { |
| public: |
| explicit SimulatedFetcher(SimulatedChannel *queue) |
| : RawFetcher(queue->channel()), queue_(queue) {} |
| ~SimulatedFetcher() { queue_->UnregisterFetcher(this); } |
| |
| bool FetchNext() override { |
| if (msgs_.size() == 0) return false; |
| |
| SetMsg(msgs_.front()); |
| msgs_.pop_front(); |
| return true; |
| } |
| |
| bool Fetch() override { |
| if (msgs_.size() == 0) { |
| if (!msg_ && queue_->latest_message()) { |
| SetMsg(queue_->latest_message()); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| // We've had a message enqueued, so we don't need to go looking for the |
| // latest message from before we started. |
| SetMsg(msgs_.back()); |
| msgs_.clear(); |
| return true; |
| } |
| |
| private: |
| friend class SimulatedChannel; |
| |
| // Updates the state inside RawFetcher to point to the data in msg_. |
| void SetMsg(std::shared_ptr<SimulatedMessage> msg) { |
| msg_ = msg; |
| data_ = msg_->context.data; |
| context_ = msg_->context; |
| } |
| |
| // Internal method for Simulation to add a message to the buffer. |
| void Enqueue(std::shared_ptr<SimulatedMessage> buffer) { |
| msgs_.emplace_back(buffer); |
| } |
| |
| SimulatedChannel *queue_; |
| std::shared_ptr<SimulatedMessage> msg_; |
| |
| // Messages queued up but not in use. |
| ::std::deque<std::shared_ptr<SimulatedMessage>> msgs_; |
| }; |
| |
| class SimulatedTimerHandler : public TimerHandler { |
| public: |
| explicit SimulatedTimerHandler(EventScheduler *scheduler, |
| ::std::function<void()> fn) |
| : scheduler_(scheduler), token_(scheduler_->InvalidToken()), fn_(fn) {} |
| ~SimulatedTimerHandler() {} |
| |
| void Setup(monotonic_clock::time_point base, |
| monotonic_clock::duration repeat_offset) override { |
| Disable(); |
| const ::aos::monotonic_clock::time_point monotonic_now = |
| scheduler_->monotonic_now(); |
| base_ = base; |
| repeat_offset_ = repeat_offset; |
| if (base < monotonic_now) { |
| token_ = scheduler_->Schedule(monotonic_now, [this]() { HandleEvent(); }); |
| } else { |
| token_ = scheduler_->Schedule(base, [this]() { HandleEvent(); }); |
| } |
| } |
| |
| void HandleEvent() { |
| const ::aos::monotonic_clock::time_point monotonic_now = |
| scheduler_->monotonic_now(); |
| if (repeat_offset_ != ::aos::monotonic_clock::zero()) { |
| // Reschedule. |
| while (base_ <= monotonic_now) base_ += repeat_offset_; |
| token_ = scheduler_->Schedule(base_, [this]() { HandleEvent(); }); |
| } else { |
| token_ = scheduler_->InvalidToken(); |
| } |
| fn_(); |
| } |
| |
| void Disable() override { |
| if (token_ != scheduler_->InvalidToken()) { |
| scheduler_->Deschedule(token_); |
| token_ = scheduler_->InvalidToken(); |
| } |
| } |
| |
| ::aos::monotonic_clock::time_point monotonic_now() const { |
| return scheduler_->monotonic_now(); |
| } |
| |
| private: |
| EventScheduler *scheduler_; |
| EventScheduler::Token token_; |
| // Function to be run on the thread |
| ::std::function<void()> fn_; |
| monotonic_clock::time_point base_; |
| monotonic_clock::duration repeat_offset_; |
| }; |
| |
| class SimulatedPhasedLoopHandler : public PhasedLoopHandler { |
| public: |
| SimulatedPhasedLoopHandler(EventScheduler *scheduler, |
| ::std::function<void(int)> fn, |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset) |
| : simulated_timer_handler_(scheduler, [this]() { HandleTimerWakeup(); }), |
| phased_loop_(interval, simulated_timer_handler_.monotonic_now(), |
| offset), |
| fn_(fn) { |
| // TODO(austin): This assumes time doesn't change between when the |
| // constructor is called and when we start running. It's probably a safe |
| // assumption. |
| Reschedule(); |
| } |
| |
| void HandleTimerWakeup() { |
| fn_(cycles_elapsed_); |
| Reschedule(); |
| } |
| |
| void set_interval_and_offset( |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset) override { |
| phased_loop_.set_interval_and_offset(interval, offset); |
| } |
| |
| void Reschedule() { |
| cycles_elapsed_ = |
| phased_loop_.Iterate(simulated_timer_handler_.monotonic_now()); |
| simulated_timer_handler_.Setup(phased_loop_.sleep_time(), |
| ::aos::monotonic_clock::zero()); |
| } |
| |
| private: |
| SimulatedTimerHandler simulated_timer_handler_; |
| |
| time::PhasedLoop phased_loop_; |
| |
| int cycles_elapsed_ = 1; |
| |
| ::std::function<void(int)> fn_; |
| }; |
| |
| class SimulatedEventLoop : public EventLoop { |
| public: |
| explicit SimulatedEventLoop( |
| EventScheduler *scheduler, |
| absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>> |
| *channels, |
| const Configuration *configuration, |
| std::vector<std::pair<EventLoop *, std::function<void(bool)>>> |
| *raw_event_loops) |
| : EventLoop(configuration), |
| scheduler_(scheduler), |
| channels_(channels), |
| raw_event_loops_(raw_event_loops) { |
| raw_event_loops_->push_back( |
| std::make_pair(this, [this](bool value) { set_is_running(value); })); |
| } |
| ~SimulatedEventLoop() override { |
| for (auto it = raw_event_loops_->begin(); it != raw_event_loops_->end(); |
| ++it) { |
| if (it->first == this) { |
| raw_event_loops_->erase(it); |
| break; |
| } |
| } |
| } |
| |
| ::aos::monotonic_clock::time_point monotonic_now() override { |
| return scheduler_->monotonic_now(); |
| } |
| |
| ::aos::realtime_clock::time_point realtime_now() override { |
| return scheduler_->realtime_now(); |
| } |
| |
| ::std::unique_ptr<RawSender> MakeRawSender(const Channel *channel) override; |
| |
| ::std::unique_ptr<RawFetcher> MakeRawFetcher(const Channel *channel) override; |
| |
| void MakeRawWatcher( |
| const Channel *channel, |
| ::std::function<void(const Context &context, const void *message)> |
| watcher) override; |
| |
| TimerHandler *AddTimer(::std::function<void()> callback) override { |
| timers_.emplace_back(new SimulatedTimerHandler(scheduler_, callback)); |
| return timers_.back().get(); |
| } |
| |
| PhasedLoopHandler *AddPhasedLoop(::std::function<void(int)> callback, |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset = |
| ::std::chrono::seconds(0)) override { |
| phased_loops_.emplace_back( |
| new SimulatedPhasedLoopHandler(scheduler_, callback, interval, offset)); |
| return phased_loops_.back().get(); |
| } |
| |
| void OnRun(::std::function<void()> on_run) override { |
| scheduler_->Schedule(scheduler_->monotonic_now(), on_run); |
| } |
| |
| void set_name(const std::string_view name) override { |
| name_ = std::string(name); |
| } |
| const std::string_view name() const override { return name_; } |
| |
| SimulatedChannel *GetSimulatedChannel(const Channel *channel); |
| |
| void Take(const Channel *channel); |
| |
| void SetRuntimeRealtimePriority(int /*priority*/) override { |
| CHECK(!is_running()) << ": Cannot set realtime priority while running."; |
| } |
| |
| private: |
| EventScheduler *scheduler_; |
| absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>> *channels_; |
| std::vector<std::pair<EventLoop *, std::function<void(bool)>>> |
| *raw_event_loops_; |
| absl::btree_set<SimpleChannel> taken_; |
| ::std::vector<std::unique_ptr<TimerHandler>> timers_; |
| ::std::vector<std::unique_ptr<PhasedLoopHandler>> phased_loops_; |
| |
| ::std::string name_; |
| }; |
| |
| void SimulatedEventLoop::MakeRawWatcher( |
| const Channel *channel, |
| std::function<void(const Context &channel, const void *message)> watcher) { |
| ValidateChannel(channel); |
| Take(channel); |
| GetSimulatedChannel(channel)->MakeRawWatcher(watcher); |
| } |
| |
| std::unique_ptr<RawSender> SimulatedEventLoop::MakeRawSender( |
| const Channel *channel) { |
| ValidateChannel(channel); |
| Take(channel); |
| return GetSimulatedChannel(channel)->MakeRawSender(this); |
| } |
| |
| std::unique_ptr<RawFetcher> SimulatedEventLoop::MakeRawFetcher( |
| const Channel *channel) { |
| ValidateChannel(channel); |
| return GetSimulatedChannel(channel)->MakeRawFetcher(); |
| } |
| |
| SimulatedChannel *SimulatedEventLoop::GetSimulatedChannel( |
| const Channel *channel) { |
| auto it = channels_->find(SimpleChannel(channel)); |
| if (it == channels_->end()) { |
| it = channels_ |
| ->emplace(SimpleChannel(channel), |
| std::unique_ptr<SimulatedChannel>( |
| new SimulatedChannel(channel, scheduler_))) |
| .first; |
| } |
| return it->second.get(); |
| } |
| |
| void SimulatedChannel::MakeRawWatcher( |
| ::std::function<void(const Context &context, const void *message)> |
| watcher) { |
| watchers_.push_back(watcher); |
| } |
| |
| ::std::unique_ptr<RawSender> SimulatedChannel::MakeRawSender( |
| EventLoop *event_loop) { |
| return ::std::unique_ptr<RawSender>(new SimulatedSender(this, event_loop)); |
| } |
| |
| ::std::unique_ptr<RawFetcher> SimulatedChannel::MakeRawFetcher() { |
| ::std::unique_ptr<SimulatedFetcher> fetcher(new SimulatedFetcher(this)); |
| fetchers_.push_back(fetcher.get()); |
| return ::std::move(fetcher); |
| } |
| |
| void SimulatedChannel::Send(std::shared_ptr<SimulatedMessage> message) { |
| message->context.queue_index = next_queue_index_.index(); |
| message->context.data = |
| message->data() + channel()->max_size() - message->context.size; |
| next_queue_index_ = next_queue_index_.Increment(); |
| |
| latest_message_ = message; |
| if (scheduler_->is_running()) { |
| for (auto &watcher : watchers_) { |
| scheduler_->Schedule(scheduler_->monotonic_now(), [watcher, message]() { |
| watcher(message->context, message->context.data); |
| }); |
| } |
| } |
| for (auto &fetcher : fetchers_) { |
| fetcher->Enqueue(message); |
| } |
| } |
| |
| void SimulatedChannel::UnregisterFetcher(SimulatedFetcher *fetcher) { |
| fetchers_.erase(::std::find(fetchers_.begin(), fetchers_.end(), fetcher)); |
| } |
| |
| SimpleChannel::SimpleChannel(const Channel *channel) |
| : name(CHECK_NOTNULL(CHECK_NOTNULL(channel)->name())->str()), |
| type(CHECK_NOTNULL(CHECK_NOTNULL(channel)->type())->str()) {} |
| |
| void SimulatedEventLoop::Take(const Channel *channel) { |
| CHECK(!is_running()) << ": Cannot add new objects while running."; |
| |
| auto result = taken_.insert(SimpleChannel(channel)); |
| CHECK(result.second) << ": " << FlatbufferToJson(channel) |
| << " is already being used."; |
| } |
| |
| SimulatedEventLoopFactory::SimulatedEventLoopFactory( |
| const Configuration *configuration) |
| : configuration_(configuration) {} |
| SimulatedEventLoopFactory::~SimulatedEventLoopFactory() {} |
| |
| ::std::unique_ptr<EventLoop> SimulatedEventLoopFactory::MakeEventLoop() { |
| return ::std::unique_ptr<EventLoop>(new SimulatedEventLoop( |
| &scheduler_, &channels_, configuration_, &raw_event_loops_)); |
| } |
| |
| void SimulatedEventLoopFactory::RunFor(monotonic_clock::duration duration) { |
| for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop : |
| raw_event_loops_) { |
| event_loop.second(true); |
| } |
| scheduler_.RunFor(duration); |
| if (!scheduler_.is_running()) { |
| for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop : |
| raw_event_loops_) { |
| event_loop.second(false); |
| } |
| } |
| } |
| |
| void SimulatedEventLoopFactory::Run() { |
| for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop : |
| raw_event_loops_) { |
| event_loop.second(true); |
| } |
| scheduler_.Run(); |
| if (!scheduler_.is_running()) { |
| for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop : |
| raw_event_loops_) { |
| event_loop.second(false); |
| } |
| } |
| } |
| |
| } // namespace aos |