blob: b46d802d36ea863568ecace6e7de16c5ba259589 [file] [log] [blame]
#include "y2019/vision/target_finder.h"
#include "aos/vision/blob/hierarchical_contour_merge.h"
using namespace aos::vision;
namespace y2019 {
namespace vision {
TargetFinder::TargetFinder() { target_template_ = Target::MakeTemplate(); }
aos::vision::RangeImage TargetFinder::Threshold(aos::vision::ImagePtr image) {
const uint8_t threshold_value = GetThresholdValue();
return aos::vision::DoThreshold(image, [&](aos::vision::PixelRef &px) {
if (px.g > threshold_value && px.b > threshold_value &&
px.r > threshold_value) {
return true;
}
return false;
});
}
// Filter blobs on size.
void TargetFinder::PreFilter(BlobList *imgs) {
imgs->erase(
std::remove_if(imgs->begin(), imgs->end(),
[](RangeImage &img) {
// We can drop images with a small number of
// pixels, but images
// must be over 20px or the math will have issues.
return (img.npixels() < 100 || img.height() < 25);
}),
imgs->end());
}
ContourNode* TargetFinder::GetContour(const RangeImage &blob) {
alloc_.reset();
return RangeImgToContour(blob, &alloc_);
}
// TODO(ben): These values will be moved into the constants.h file.
namespace {
constexpr double f_x = 481.4957;
constexpr double c_x = 341.215;
constexpr double f_y = 484.314;
constexpr double c_y = 251.29;
constexpr double f_x_prime = 363.1424;
constexpr double c_x_prime = 337.9895;
constexpr double f_y_prime = 366.4837;
constexpr double c_y_prime = 240.0702;
constexpr double k_1 = -0.2739;
constexpr double k_2 = 0.01583;
constexpr double k_3 = 0.04201;
constexpr int iterations = 7;
}
Point UnWarpPoint(const Point &point, int iterations) {
const double x0 = ((double)point.x - c_x) / f_x;
const double y0 = ((double)point.y - c_y) / f_y;
double x = x0;
double y = y0;
for (int i = 0; i < iterations; i++) {
const double r_sqr = x * x + y * y;
const double coeff =
1.0 + r_sqr * (k_1 + k_2 * r_sqr * (1.0 + k_3 * r_sqr));
x = x0 / coeff;
y = y0 / coeff;
}
double nx = x * f_x_prime + c_x_prime;
double ny = y * f_y_prime + c_y_prime;
Point p = {static_cast<int>(nx), static_cast<int>(ny)};
return p;
}
void TargetFinder::UnWarpContour(ContourNode *start) const {
ContourNode *node = start;
while (node->next != start) {
node->set_point(UnWarpPoint(node->pt, iterations));
node = node->next;
}
node->set_point(UnWarpPoint(node->pt, iterations));
}
// TODO: Try hierarchical merge for this.
// Convert blobs into polygons.
std::vector<aos::vision::Segment<2>> TargetFinder::FillPolygon(
ContourNode* start, bool verbose) {
if (verbose) printf("Process Polygon.\n");
struct Pt {
float x;
float y;
};
std::vector<Pt> points;
// Collect all slopes from the contour.
Point previous_point = start->pt;
for (ContourNode *node = start; node->next != start;) {
node = node->next;
Point current_point = node->pt;
points.push_back({static_cast<float>(current_point.x - previous_point.x),
static_cast<float>(current_point.y - previous_point.y)});
previous_point = current_point;
}
const int num_points = points.size();
auto get_pt = [&points, num_points](int i) {
return points[(i + num_points * 2) % num_points];
};
std::vector<Pt> filtered_points = points;
// Three box filter makith a guassian?
// Run gaussian filter over the slopes 3 times. That'll get us pretty close
// to running a gausian over it.
for (int k = 0; k < 3; ++k) {
const int window_size = 2;
for (size_t i = 0; i < points.size(); ++i) {
Pt a{0.0, 0.0};
for (int j = -window_size; j <= window_size; ++j) {
Pt p = get_pt(j + i);
a.x += p.x;
a.y += p.y;
}
a.x /= (window_size * 2 + 1);
a.y /= (window_size * 2 + 1);
const float scale = 1.0 + (i / float(points.size() * 10));
a.x *= scale;
a.y *= scale;
filtered_points[i] = a;
}
points = filtered_points;
}
// Heuristic which says if a particular slope is part of a corner.
auto is_corner = [&](size_t i) {
const Pt a = get_pt(i - 3);
const Pt b = get_pt(i + 3);
const double dx = (a.x - b.x);
const double dy = (a.y - b.y);
return dx * dx + dy * dy > 0.25;
};
bool prev_v = is_corner(-1);
// Find all centers of corners.
// Because they round, multiple points may be a corner.
std::vector<size_t> edges;
size_t kBad = points.size() + 10;
size_t prev_up = kBad;
size_t wrapped_n = prev_up;
for (size_t i = 0; i < points.size(); ++i) {
bool v = is_corner(i);
if (prev_v && !v) {
if (prev_up == kBad) {
wrapped_n = i;
} else {
edges.push_back((prev_up + i - 1) / 2);
}
}
if (v && !prev_v) {
prev_up = i;
}
prev_v = v;
}
if (wrapped_n != kBad) {
edges.push_back(((prev_up + points.size() + wrapped_n - 1) / 2) % points.size());
}
if (verbose) printf("Edge Count (%zu).\n", edges.size());
// Get all CountourNodes from the contour.
using aos::vision::PixelRef;
std::vector<ContourNode *> segments;
{
std::vector<ContourNode *> segments_all;
for (ContourNode *node = start; node->next != start;) {
node = node->next;
segments_all.push_back(node);
}
for (size_t i : edges) {
segments.push_back(segments_all[i]);
}
}
if (verbose) printf("Segment Count (%zu).\n", segments.size());
// Run best-fits over each line segment.
std::vector<Segment<2>> seg_list;
if (segments.size() == 4) {
for (size_t i = 0; i < segments.size(); ++i) {
ContourNode *segment_end = segments[(i + 1) % segments.size()];
ContourNode *segment_start = segments[i];
float mx = 0.0;
float my = 0.0;
int n = 0;
for (ContourNode *node = segment_start; node != segment_end;
node = node->next) {
mx += node->pt.x;
my += node->pt.y;
++n;
// (x - [x] / N) ** 2 = [x * x] - 2 * [x] * [x] / N + [x] * [x] / N / N;
}
mx /= n;
my /= n;
float xx = 0.0;
float xy = 0.0;
float yy = 0.0;
for (ContourNode *node = segment_start; node != segment_end;
node = node->next) {
const float x = node->pt.x - mx;
const float y = node->pt.y - my;
xx += x * x;
xy += x * y;
yy += y * y;
}
// TODO: Extract common to hierarchical merge.
const float neg_b_over_2 = (xx + yy) / 2.0;
const float c = (xx * yy - xy * xy);
const float sqr = sqrt(neg_b_over_2 * neg_b_over_2 - c);
{
const float lam = neg_b_over_2 + sqr;
float x = xy;
float y = lam - xx;
const float norm = hypot(x, y);
x /= norm;
y /= norm;
seg_list.push_back(
Segment<2>(Vector<2>(mx, my), Vector<2>(mx + x, my + y)));
}
/* Characteristic polynomial
1 lam^2 - (xx + yy) lam + (xx * yy - xy * xy) = 0
[a b]
[c d]
// covariance matrix.
[xx xy] [nx]
[xy yy] [ny]
*/
}
}
if (verbose) printf("Poly Count (%zu).\n", seg_list.size());
return seg_list;
}
// Convert segments into target components (left or right)
std::vector<TargetComponent> TargetFinder::FillTargetComponentList(
const std::vector<std::vector<Segment<2>>> &seg_list) {
std::vector<TargetComponent> list;
TargetComponent new_target;
for (const std::vector<Segment<2>> &poly : seg_list) {
// Reject missized pollygons for now. Maybe rectify them here in the future;
if (poly.size() != 4) continue;
std::vector<Vector<2>> corners;
for (size_t i = 0; i < 4; ++i) {
corners.push_back(poly[i].Intersect(poly[(i + 1) % 4]));
}
// Select the closest two points. Short side of the rectangle.
double min_dist = -1;
std::pair<size_t, size_t> closest;
for (size_t i = 0; i < 4; ++i) {
size_t next = (i + 1) % 4;
double nd = corners[i].SquaredDistanceTo(corners[next]);
if (min_dist == -1 || nd < min_dist) {
min_dist = nd;
closest.first = i;
closest.second = next;
}
}
// Verify our top is above the bottom.
size_t bot_index = closest.first;
size_t top_index = (closest.first + 2) % 4;
if (corners[top_index].y() < corners[bot_index].y()) {
closest.first = top_index;
closest.second = (top_index + 1) % 4;
}
// Find the major axis.
size_t far_first = (closest.first + 2) % 4;
size_t far_second = (closest.second + 2) % 4;
Segment<2> major_axis(
(corners[closest.first] + corners[closest.second]) * 0.5,
(corners[far_first] + corners[far_second]) * 0.5);
if (major_axis.AsVector().AngleToZero() > M_PI / 180.0 * 120.0 ||
major_axis.AsVector().AngleToZero() < M_PI / 180.0 * 60.0) {
// Target is angled way too much, drop it.
continue;
}
// organize the top points.
Vector<2> topA = corners[closest.first] - major_axis.B();
new_target.major_axis = major_axis;
if (major_axis.AsVector().AngleToZero() > M_PI / 2.0) {
// We have a left target since we are leaning positive.
new_target.is_right = false;
if (topA.AngleTo(major_axis.AsVector()) > 0.0) {
// And our A point is left of the major axis.
new_target.inside = corners[closest.second];
new_target.top = corners[closest.first];
} else {
// our A point is to the right of the major axis.
new_target.inside = corners[closest.first];
new_target.top = corners[closest.second];
}
} else {
// We have a right target since we are leaning negative.
new_target.is_right = true;
if (topA.AngleTo(major_axis.AsVector()) > 0.0) {
// And our A point is left of the major axis.
new_target.inside = corners[closest.first];
new_target.top = corners[closest.second];
} else {
// our A point is to the right of the major axis.
new_target.inside = corners[closest.second];
new_target.top = corners[closest.first];
}
}
// organize the top points.
Vector<2> botA = corners[far_first] - major_axis.A();
if (major_axis.AsVector().AngleToZero() > M_PI / 2.0) {
// We have a right target since we are leaning positive.
if (botA.AngleTo(major_axis.AsVector()) < M_PI) {
// And our A point is left of the major axis.
new_target.outside = corners[far_second];
new_target.bottom = corners[far_first];
} else {
// our A point is to the right of the major axis.
new_target.outside = corners[far_first];
new_target.bottom = corners[far_second];
}
} else {
// We have a left target since we are leaning negative.
if (botA.AngleTo(major_axis.AsVector()) < M_PI) {
// And our A point is left of the major axis.
new_target.outside = corners[far_first];
new_target.bottom = corners[far_second];
} else {
// our A point is to the right of the major axis.
new_target.outside = corners[far_second];
new_target.bottom = corners[far_first];
}
}
// This piece of the target should be ready now.
list.emplace_back(new_target);
}
return list;
}
// Match components into targets.
std::vector<Target> TargetFinder::FindTargetsFromComponents(
const std::vector<TargetComponent> component_list, bool verbose) {
std::vector<Target> target_list;
using namespace aos::vision;
if (component_list.size() < 2) {
// We don't enough parts for a target.
return target_list;
}
for (size_t i = 0; i < component_list.size(); i++) {
const TargetComponent &a = component_list[i];
for (size_t j = 0; j < i; j++) {
bool target_valid = false;
Target new_target;
const TargetComponent &b = component_list[j];
// Reject targets that are too far off vertically.
Vector<2> a_center = a.major_axis.Center();
if (a_center.y() > b.bottom.y() || a_center.y() < b.top.y()) {
continue;
}
Vector<2> b_center = b.major_axis.Center();
if (b_center.y() > a.bottom.y() || b_center.y() < a.top.y()) {
continue;
}
if (a.is_right && !b.is_right) {
if (a.top.x() > b.top.x()) {
new_target.right = a;
new_target.left = b;
target_valid = true;
}
} else if (!a.is_right && b.is_right) {
if (b.top.x() > a.top.x()) {
new_target.right = b;
new_target.left = a;
target_valid = true;
}
}
if (target_valid) {
target_list.emplace_back(new_target);
}
}
}
if (verbose) printf("Possible Target: %zu.\n", target_list.size());
return target_list;
}
std::vector<IntermediateResult> TargetFinder::FilterResults(
const std::vector<IntermediateResult> &results) {
std::vector<IntermediateResult> filtered;
for (const IntermediateResult &res : results) {
if (res.solver_error < 75.0) {
filtered.emplace_back(res);
}
}
return filtered;
}
} // namespace vision
} // namespace y2019