blob: 545e197bfba83741b5606785d0fe72e48acd1dca [file] [log] [blame]
#include <string.h>
#include <errno.h>
#include <inttypes.h>
#include "frc971/input/usb_receiver.h"
#include "aos/common/logging/logging.h"
#include "aos/common/control_loop/ControlLoop.h"
namespace frc971 {
USBReceiver::USBReceiver() {
Reset();
}
void USBReceiver::RunIteration() {
if (ReceiveData()) {
Reset();
} else {
const ::aos::time::Time received_time = ::aos::time::Time::Now();
if (phase_locker_.IsCurrentPacketGood(received_time, sequence_.count())) {
LOG(DEBUG, "processing data\n");
ProcessData();
}
}
}
void USBReceiver::PhaseLocker::Reset() {
LOG(INFO, "resetting\n");
last_good_packet_time_ = ::aos::time::Time(0, 0);
last_good_sequence_ = -1;
good_phase_ = guess_phase_ = kUnknownPhase;
guess_phase_good_ = guess_phase_bad_ = 0;
good_phase_early_ = good_phase_late_ = 0;
}
bool USBReceiver::PhaseLocker::IsCurrentPacketGood(
const ::aos::time::Time &received_time,
int32_t sequence) {
if (last_good_packet_time_ != ::aos::time::Time(0, 0) &&
received_time - last_good_packet_time_ > kResetTime) {
LOG(WARNING, "no good packet received in too long\n");
Reset();
return false;
}
if (last_good_sequence_ != -1 && sequence - last_good_sequence_ > 100) {
LOG(WARNING, "skipped too many packets\n");
Reset();
return false;
}
using ::aos::control_loops::kLoopFrequency;
// How often we (should) receive packets.
static const ::aos::time::Time kPacketFrequency =
kLoopFrequency / kPacketsPerLoopCycle;
static const ::aos::time::Time kPacketClose =
kPacketFrequency * 65 / 100;
static const ::aos::time::Time kSwitchOffset =
kPacketFrequency * 6 / 10;
// When we want to receive a packet for the next cycle of control loops.
::aos::time::Time next_desired =
::aos::control_loops::NextLoopTime(received_time) + kDesiredOffset;
// If we came up with something more than 1 packet in the past.
if (next_desired - received_time < -kPacketFrequency) {
next_desired += kLoopFrequency;
}
// How far off of when we want the next packet this one is.
const ::aos::time::Time offset = next_desired - received_time;
const int received_phase = sequence % kPacketsPerLoopCycle;
assert(!(good_phase_early_ != 0 && good_phase_late_ != 0));
if (good_phase_ == kUnknownPhase &&
guess_phase_good_ > kMinGoodGuessCycles) {
good_phase_ = guess_phase_;
if (guess_phase_offset_ < kPacketFrequency / -2) {
++good_phase_;
} else if (guess_phase_offset_ > kPacketFrequency / 2) {
--good_phase_;
}
LOG(INFO, "locked on to phase %d\n", good_phase_);
} else if (guess_phase_bad_ > kMaxBadGuessCycles) {
LOG(INFO, "guessed wrong phase too many times\n");
Reset();
}
if (good_phase_early_ > kSwitchCycles) {
good_phase_early_ = 0;
LOG(INFO, "switching from phase %d to %d-1\n",
good_phase_, good_phase_);
--good_phase_;
} else if (good_phase_late_ > kSwitchCycles) {
good_phase_late_ = 0;
LOG(INFO, "switching from phase %d to %d+1\n",
good_phase_, good_phase_);
++good_phase_;
}
if (good_phase_ == kUnknownPhase) {
LOG(DEBUG, "guessing which packet is good\n");
// If it's close to the right time.
if (offset.abs() < kPacketClose) {
if (guess_phase_ == kUnknownPhase) {
if (offset.abs() < kPacketFrequency * 55 / 100) {
guess_phase_ = received_phase;
guess_phase_offset_ = offset;
}
} else if (received_phase == guess_phase_) {
LOG(DEBUG, "guessed right phase %d\n", received_phase);
++guess_phase_good_;
guess_phase_bad_ = 0;
guess_phase_offset_ = (guess_phase_offset_ * 9 + offset) / 10;
}
} else if (guess_phase_ != kUnknownPhase &&
received_phase == guess_phase_) {
LOG(DEBUG, "guessed wrong phase %d\n", received_phase);
++guess_phase_bad_;
guess_phase_good_ = ::std::max(0, guess_phase_good_ -
(kMinGoodGuessCycles / 10));
}
return false;
} else { // we know what phase we're looking for
// Deal with it if the above logic for tweaking the phase that we're
// using wrapped it around.
if (good_phase_ == -1) {
good_phase_ = kPacketsPerLoopCycle;
} else if (good_phase_ == kPacketsPerLoopCycle) {
LOG(DEBUG, "dewrapping\n");
good_phase_ = 0;
}
assert(good_phase_ >= 0);
assert(good_phase_ < kPacketsPerLoopCycle);
if (received_phase == good_phase_) {
if (offset < -kSwitchOffset) {
++good_phase_early_;
good_phase_late_ = 0;
} else if (offset > kSwitchOffset) {
++good_phase_late_;
good_phase_early_ = 0;
} else {
good_phase_early_ = good_phase_late_ = 0;
}
last_good_packet_time_ = received_time;
last_good_sequence_ = sequence;
return true;
} else {
return false;
}
}
}
void USBReceiver::StaticTransferCallback(libusb::Transfer *transfer,
void *self) {
static_cast<USBReceiver *>(self)->TransferCallback(transfer);
}
void USBReceiver::TransferCallback(libusb::Transfer *transfer) {
if (transfer->status() == LIBUSB_TRANSFER_COMPLETED) {
LOG(DEBUG, "transfer %p completed\n", transfer);
completed_transfer_ = transfer;
} else if (transfer->status() == LIBUSB_TRANSFER_TIMED_OUT) {
LOG(WARNING, "transfer %p timed out\n", transfer);
completed_transfer_ = kTransferFailed;
} else if (transfer->status() == LIBUSB_TRANSFER_CANCELLED) {
LOG(DEBUG, "transfer %p cancelled\n", transfer);
} else {
LOG(FATAL, "transfer %p has status %d\n", transfer, transfer->status());
}
transfer->Submit();
}
bool USBReceiver::ReceiveData() {
// Loop and then return once we get a good one.
while (true) {
completed_transfer_ = NULL;
while (completed_transfer_ == NULL) {
libusb_.HandleEvents();
}
if (completed_transfer_ == kTransferFailed) {
LOG(WARNING, "transfer failed\n");
return true;
}
if (completed_transfer_->read_bytes() <
static_cast<ssize_t>(sizeof(GyroBoardData))) {
LOG(ERROR, "read %d bytes instead of at least %zd\n",
completed_transfer_->read_bytes(), sizeof(GyroBoardData));
continue;
}
memcpy(data(), completed_transfer_->data(),
sizeof(GyroBoardData));
int32_t count_before = sequence_.count();
sequence_.Update(data()->sequence);
if (count_before == 0) {
LOG(INFO, "count starting at %" PRId32 "\n", sequence_.count());
} else if (sequence_.count() - count_before != 1) {
LOG(WARNING, "count went from %" PRId32" to %" PRId32 "\n",
count_before, sequence_.count());
}
return false;
}
}
void USBReceiver::Reset() {
typedef ::std::unique_ptr<libusb::IsochronousTransfer> TransferType;
for (TransferType &c : transfers_) {
c.reset();
}
dev_handle_ = ::std::unique_ptr<LibUSBDeviceHandle>(
libusb_.FindDeviceWithVIDPID(kVid, kPid));
if (!dev_handle_) {
LOG(ERROR, "couldn't find device. exiting\n");
exit(1);
}
for (TransferType &c : transfers_) {
c.reset(new libusb::IsochronousTransfer(kDataLength, 1,
StaticTransferCallback, this));
c->FillIsochronous(dev_handle_.get(), kEndpoint, kReadTimeout);
c->Submit();
}
sequence_.Reset();
phase_locker_.Reset();
}
constexpr ::aos::time::Time USBReceiver::kReadTimeout;
constexpr ::aos::time::Time USBReceiver::kDesiredOffset;
constexpr ::aos::time::Time USBReceiver::kResetTime;
} // namespace frc971