| #!/usr/bin/python3 |
| |
| from __future__ import print_function |
| import os |
| from frc971.control_loops.python import basic_window |
| from frc971.control_loops.python.color import Color, palette |
| import random |
| import gi |
| import numpy |
| |
| gi.require_version('Gtk', '3.0') |
| from gi.repository import Gdk, Gtk |
| import cairo |
| import graph_generate |
| from graph_generate import XYSegment, AngleSegment, to_theta, to_xy, alpha_blend |
| from graph_generate import back_to_xy_loop, subdivide_theta, to_theta_loop |
| from graph_generate import l1, l2, joint_center |
| |
| from frc971.control_loops.python.basic_window import OverrideMatrix, identity, quit_main_loop, set_color |
| |
| import shapely |
| from shapely.geometry import Polygon |
| |
| |
| def px(cr): |
| return OverrideMatrix(cr, identity) |
| |
| |
| def draw_px_cross(cr, length_px): |
| """Draws a cross with fixed dimensions in pixel space.""" |
| with px(cr): |
| x, y = cr.get_current_point() |
| cr.move_to(x, y - length_px) |
| cr.line_to(x, y + length_px) |
| cr.stroke() |
| |
| cr.move_to(x - length_px, y) |
| cr.line_to(x + length_px, y) |
| cr.stroke() |
| |
| |
| def angle_dist_sqr(a1, a2): |
| """Distance between two points in angle space.""" |
| return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2 |
| |
| |
| # Find the highest y position that intersects the vertical line defined by x. |
| def inter_y(x): |
| return numpy.sqrt((l2 + l1)**2 - |
| (x - joint_center[0])**2) + joint_center[1] |
| |
| |
| # This is the x position where the inner (hyperextension) circle intersects the horizontal line |
| derr = numpy.sqrt((l1 - l2)**2 - (joint_center[1] - 0.3048)**2) |
| |
| |
| # Define min and max l1 angles based on vertical constraints. |
| def get_angle(boundary): |
| h = numpy.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1] |
| return numpy.arctan2(h, boundary - joint_center[0]) |
| |
| |
| # left hand side lines |
| lines1 = [ |
| (-0.826135, inter_y(-0.826135)), |
| (-0.826135, 0.1397), |
| (-23.025 * 0.0254, 0.1397), |
| (-23.025 * 0.0254, 0.3048), |
| (joint_center[0] - derr, 0.3048), |
| ] |
| |
| # right hand side lines |
| lines2 = [(joint_center[0] + derr, 0.3048), (0.422275, 0.3048), |
| (0.422275, 0.1397), (0.826135, 0.1397), |
| (0.826135, inter_y(0.826135))] |
| |
| t1_min = get_angle((32.525 - 4.0) * 0.0254) |
| t2_min = -7.0 / 4.0 * numpy.pi |
| |
| t1_max = get_angle((-32.525 + 4.0) * 0.0254) |
| t2_max = numpy.pi * 3.0 / 4.0 |
| |
| |
| # Draw lines to cr + stroke. |
| def draw_lines(cr, lines): |
| cr.move_to(lines[0][0], lines[0][1]) |
| for pt in lines[1:]: |
| cr.line_to(pt[0], pt[1]) |
| with px(cr): |
| cr.stroke() |
| |
| |
| # Rotate a rasterized loop such that it aligns to when the parameters loop |
| def rotate_to_jump_point(points): |
| last_pt = points[0] |
| for pt_i in range(1, len(points)): |
| pt = points[pt_i] |
| delta = last_pt[1] - pt[1] |
| if abs(delta) > numpy.pi: |
| return points[pt_i:] + points[:pt_i] |
| last_pt = pt |
| return points |
| |
| |
| # shift points vertically by dy. |
| def y_shift(points, dy): |
| return [(x, y + dy) for x, y in points] |
| |
| |
| lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0)) |
| lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2)) |
| |
| # Some hacks here to make a single polygon by shifting to get an extra copy of the contraints. |
| lines1_theta = y_shift(lines1_theta_part, -numpy.pi * 2) + lines1_theta_part + \ |
| y_shift(lines1_theta_part, numpy.pi * 2) |
| lines2_theta = y_shift(lines2_theta_part, numpy.pi * 2) + lines2_theta_part + \ |
| y_shift(lines2_theta_part, -numpy.pi * 2) |
| |
| lines_theta = lines1_theta + lines2_theta |
| |
| p1 = Polygon(lines_theta) |
| |
| p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), (t1_max, t2_max), |
| (t1_min, t2_max)]) |
| |
| # Fully computed theta constrints. |
| lines_theta = list(p1.intersection(p2).exterior.coords) |
| |
| lines1_theta_back = back_to_xy_loop(lines1_theta) |
| lines2_theta_back = back_to_xy_loop(lines2_theta) |
| |
| lines_theta_back = back_to_xy_loop(lines_theta) |
| |
| |
| # Get the closest point to a line from a test pt. |
| def get_closest(prev, cur, pt): |
| dx_ang = (cur[0] - prev[0]) |
| dy_ang = (cur[1] - prev[1]) |
| |
| d = numpy.sqrt(dx_ang**2 + dy_ang**2) |
| if (d < 0.000001): |
| return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2) |
| |
| pdx = -dy_ang / d |
| pdy = dx_ang / d |
| |
| dpx = pt[0] - prev[0] |
| dpy = pt[1] - prev[1] |
| |
| alpha = (dx_ang * dpx + dy_ang * dpy) / d / d |
| |
| if (alpha < 0): |
| return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2) |
| elif (alpha > 1): |
| return cur, numpy.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2) |
| else: |
| return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \ |
| abs(dpx * pdx + dpy * pdy) |
| |
| |
| def closest_segment(lines, pt): |
| c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt) |
| for i in range(1, len(lines)): |
| prev = lines[i - 1] |
| cur = lines[i] |
| c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt) |
| if c_pt_new_dist < c_pt_dist: |
| c_pt = c_pt_new |
| c_pt_dist = c_pt_new_dist |
| return c_pt, c_pt_dist |
| |
| |
| # Create a GTK+ widget on which we will draw using Cairo |
| class Silly(basic_window.BaseWindow): |
| |
| def __init__(self): |
| super(Silly, self).__init__() |
| |
| self.window = Gtk.Window() |
| self.window.set_title("DrawingArea") |
| |
| self.window.set_events(Gdk.EventMask.BUTTON_PRESS_MASK |
| | Gdk.EventMask.BUTTON_RELEASE_MASK |
| | Gdk.EventMask.POINTER_MOTION_MASK |
| | Gdk.EventMask.SCROLL_MASK |
| | Gdk.EventMask.KEY_PRESS_MASK) |
| self.method_connect("key-press-event", self.do_key_press) |
| self.method_connect("button-press-event", |
| self._do_button_press_internal) |
| self.method_connect("configure-event", self._do_configure) |
| self.window.add(self) |
| self.window.show_all() |
| |
| self.theta_version = False |
| self.reinit_extents() |
| |
| self.last_pos = (numpy.pi / 2.0, 1.0) |
| self.circular_index_select = -1 |
| |
| # Extra stuff for drawing lines. |
| self.segments = [] |
| self.prev_segment_pt = None |
| self.now_segment_pt = None |
| self.spline_edit = 0 |
| self.edit_control1 = True |
| |
| def do_key_press(self, event): |
| pass |
| |
| def _do_button_press_internal(self, event): |
| o_x = event.x |
| o_y = event.y |
| x = event.x - self.window_shape[0] / 2 |
| y = self.window_shape[1] / 2 - event.y |
| scale = self.get_current_scale() |
| event.x = x / scale + self.center[0] |
| event.y = y / scale + self.center[1] |
| self.do_button_press(event) |
| event.x = o_x |
| event.y = o_y |
| |
| def do_button_press(self, event): |
| pass |
| |
| def _do_configure(self, event): |
| self.window_shape = (event.width, event.height) |
| |
| def redraw(self): |
| if not self.needs_redraw: |
| self.needs_redraw = True |
| self.window.queue_draw() |
| |
| def method_connect(self, event, cb): |
| |
| def handler(obj, *args): |
| cb(*args) |
| |
| self.window.connect(event, handler) |
| |
| def reinit_extents(self): |
| if self.theta_version: |
| self.extents_x_min = -numpy.pi * 2 |
| self.extents_x_max = numpy.pi * 2 |
| self.extents_y_min = -numpy.pi * 2 |
| self.extents_y_max = numpy.pi * 2 |
| else: |
| self.extents_x_min = -40.0 * 0.0254 |
| self.extents_x_max = 40.0 * 0.0254 |
| self.extents_y_min = -4.0 * 0.0254 |
| self.extents_y_max = 110.0 * 0.0254 |
| |
| self.init_extents( |
| (0.5 * (self.extents_x_min + self.extents_x_max), 0.5 * |
| (self.extents_y_max + self.extents_y_min)), |
| (1.0 * (self.extents_x_max - self.extents_x_min), 1.0 * |
| (self.extents_y_max - self.extents_y_min))) |
| |
| # Handle the expose-event by drawing |
| def handle_draw(self, cr): |
| # use "with px(cr): blah;" to transform to pixel coordinates. |
| |
| # Fill the background color of the window with grey |
| set_color(cr, palette["GREY"]) |
| cr.paint() |
| |
| # Draw a extents rectangle |
| set_color(cr, palette["WHITE"]) |
| cr.rectangle(self.extents_x_min, self.extents_y_min, |
| (self.extents_x_max - self.extents_x_min), |
| self.extents_y_max - self.extents_y_min) |
| cr.fill() |
| |
| if not self.theta_version: |
| # Draw a filled white rectangle. |
| set_color(cr, palette["WHITE"]) |
| cr.rectangle(-2.0, -2.0, 4.0, 4.0) |
| cr.fill() |
| |
| set_color(cr, palette["BLUE"]) |
| cr.arc(joint_center[0], joint_center[1], l2 + l1, 0, |
| 2.0 * numpy.pi) |
| with px(cr): |
| cr.stroke() |
| cr.arc(joint_center[0], joint_center[1], l1 - l2, 0, |
| 2.0 * numpy.pi) |
| with px(cr): |
| cr.stroke() |
| else: |
| # Draw a filled white rectangle. |
| set_color(cr, palette["WHITE"]) |
| cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2.0, numpy.pi * 2.0) |
| cr.fill() |
| |
| if self.theta_version: |
| set_color(cr, palette["BLUE"]) |
| for i in range(-6, 6): |
| cr.move_to(-40, -40 + i * numpy.pi) |
| cr.line_to(40, 40 + i * numpy.pi) |
| with px(cr): |
| cr.stroke() |
| |
| if self.theta_version: |
| set_color(cr, Color(0.5, 0.5, 1.0)) |
| draw_lines(cr, lines_theta) |
| else: |
| set_color(cr, Color(0.5, 1.0, 1.0)) |
| draw_lines(cr, lines1) |
| draw_lines(cr, lines2) |
| |
| def get_circular_index(pt): |
| theta1, theta2 = pt |
| circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi)) |
| return circular_index |
| |
| set_color(cr, palette["BLUE"]) |
| lines = subdivide_theta(lines_theta) |
| o_circular_index = circular_index = get_circular_index(lines[0]) |
| p_xy = to_xy(lines[0][0], lines[0][1]) |
| if circular_index == self.circular_index_select: |
| cr.move_to(p_xy[0] + circular_index * 0, p_xy[1]) |
| for pt in lines[1:]: |
| p_xy = to_xy(pt[0], pt[1]) |
| circular_index = get_circular_index(pt) |
| if o_circular_index == self.circular_index_select: |
| cr.line_to(p_xy[0] + o_circular_index * 0, p_xy[1]) |
| if circular_index != o_circular_index: |
| o_circular_index = circular_index |
| with px(cr): |
| cr.stroke() |
| if circular_index == self.circular_index_select: |
| cr.move_to(p_xy[0] + circular_index * 0, p_xy[1]) |
| |
| with px(cr): |
| cr.stroke() |
| |
| if not self.theta_version: |
| theta1, theta2 = to_theta(self.last_pos, |
| self.circular_index_select) |
| x, y = joint_center[0], joint_center[1] |
| cr.move_to(x, y) |
| |
| x += numpy.cos(theta1) * l1 |
| y += numpy.sin(theta1) * l1 |
| cr.line_to(x, y) |
| x += numpy.cos(theta2) * l2 |
| y += numpy.sin(theta2) * l2 |
| cr.line_to(x, y) |
| with px(cr): |
| cr.stroke() |
| |
| cr.move_to(self.last_pos[0], self.last_pos[1]) |
| set_color(cr, Color(0.0, 1.0, 0.2)) |
| draw_px_cross(cr, 20) |
| |
| if self.theta_version: |
| set_color(cr, Color(0.0, 1.0, 0.2)) |
| cr.move_to(self.last_pos[0], self.last_pos[1]) |
| draw_px_cross(cr, 5) |
| |
| c_pt, dist = closest_segment(lines_theta, self.last_pos) |
| print("dist:", dist, c_pt, self.last_pos) |
| set_color(cr, palette["CYAN"]) |
| cr.move_to(c_pt[0], c_pt[1]) |
| draw_px_cross(cr, 5) |
| |
| set_color(cr, Color(0.0, 0.5, 1.0)) |
| for segment in self.segments: |
| color = [0, random.random(), 1] |
| random.shuffle(color) |
| set_color(cr, Color(color[0], color[1], color[2])) |
| segment.DrawTo(cr, self.theta_version) |
| with px(cr): |
| cr.stroke() |
| |
| set_color(cr, Color(0.0, 1.0, 0.5)) |
| segment = self.current_seg() |
| if segment: |
| print(segment) |
| segment.DrawTo(cr, self.theta_version) |
| with px(cr): |
| cr.stroke() |
| |
| def cur_pt_in_theta(self): |
| if self.theta_version: return self.last_pos |
| return to_theta(self.last_pos, self.circular_index_select) |
| |
| # Current segment based on which mode the drawing system is in. |
| def current_seg(self): |
| if self.prev_segment_pt and self.now_segment_pt: |
| if self.theta_version: |
| return AngleSegment(self.prev_segment_pt, self.now_segment_pt) |
| else: |
| return XYSegment(self.prev_segment_pt, self.now_segment_pt) |
| |
| def do_key_press(self, event): |
| keyval = Gdk.keyval_to_lower(event.keyval) |
| print("Gdk.KEY_" + Gdk.keyval_name(keyval)) |
| if keyval == Gdk.KEY_q: |
| print("Found q key and exiting.") |
| quit_main_loop() |
| elif keyval == Gdk.KEY_c: |
| # Increment which arm solution we render |
| self.circular_index_select += 1 |
| print(self.circular_index_select) |
| elif keyval == Gdk.KEY_v: |
| # Decrement which arm solution we render |
| self.circular_index_select -= 1 |
| print(self.circular_index_select) |
| elif keyval == Gdk.KEY_w: |
| # Add this segment to the segment list. |
| segment = self.current_seg() |
| if segment: self.segments.append(segment) |
| self.prev_segment_pt = self.now_segment_pt |
| |
| elif keyval == Gdk.KEY_r: |
| self.prev_segment_pt = self.now_segment_pt |
| |
| elif keyval == Gdk.KEY_p: |
| # Print out the segments. |
| print(repr(self.segments)) |
| elif keyval == Gdk.KEY_g: |
| # Generate theta points. |
| if self.segments: |
| print(repr(self.segments[0].ToThetaPoints())) |
| elif keyval == Gdk.KEY_e: |
| best_pt = self.now_segment_pt |
| best_dist = 1e10 |
| for segment in self.segments: |
| d = angle_dist_sqr(segment.start, self.now_segment_pt) |
| if (d < best_dist): |
| best_pt = segment.start |
| best_dist = d |
| d = angle_dist_sqr(segment.end, self.now_segment_pt) |
| if (d < best_dist): |
| best_pt = segment.end |
| best_dist = d |
| self.now_segment_pt = best_pt |
| |
| elif keyval == Gdk.KEY_t: |
| # Toggle between theta and xy renderings |
| if self.theta_version: |
| theta1, theta2 = self.last_pos |
| data = to_xy(theta1, theta2) |
| self.circular_index_select = int( |
| numpy.floor((theta2 - theta1) / numpy.pi)) |
| self.last_pos = (data[0], data[1]) |
| else: |
| self.last_pos = self.cur_pt_in_theta() |
| |
| self.theta_version = not self.theta_version |
| self.reinit_extents() |
| |
| elif keyval == Gdk.KEY_z: |
| self.edit_control1 = not self.edit_control1 |
| if self.edit_control1: |
| self.now_segment_pt = self.segments[0].control1 |
| else: |
| self.now_segment_pt = self.segments[0].control2 |
| if not self.theta_version: |
| data = to_xy(self.now_segment_pt[0], self.now_segment_pt[1]) |
| self.last_pos = (data[0], data[1]) |
| else: |
| self.last_pos = self.now_segment_pt |
| |
| print("self.last_pos: ", self.last_pos, " ci: ", |
| self.circular_index_select) |
| |
| self.redraw() |
| |
| def do_button_press(self, event): |
| self.last_pos = (event.x, event.y) |
| self.now_segment_pt = self.cur_pt_in_theta() |
| |
| if self.edit_control1: |
| self.segments[0].control1 = self.now_segment_pt |
| else: |
| self.segments[0].control2 = self.now_segment_pt |
| |
| print('Clicked at theta: %s' % (repr(self.now_segment_pt, ))) |
| if not self.theta_version: |
| print('Clicked at xy, circular index: (%f, %f, %f)' % |
| (self.last_pos[0], self.last_pos[1], |
| self.circular_index_select)) |
| |
| print('c1: numpy.array([%f, %f])' % |
| (self.segments[0].control1[0], self.segments[0].control1[1])) |
| print('c2: numpy.array([%f, %f])' % |
| (self.segments[0].control2[0], self.segments[0].control2[1])) |
| |
| self.redraw() |
| |
| |
| silly = Silly() |
| silly.segments = graph_generate.segments |
| basic_window.RunApp() |