blob: 7f3b0cf3f652f1999e8556dacb82b83ed099403b [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) 2015-2018 FIRST. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in the root directory of */
/* the project. */
/*----------------------------------------------------------------------------*/
#include "wpi/timestamp.h"
#include <atomic>
#ifdef _WIN32
#include <windows.h>
#include <cassert>
#include <exception>
#else
#include <chrono>
#endif
// offset in microseconds
static uint64_t zerotime() {
#ifdef _WIN32
FILETIME ft;
uint64_t tmpres = 0;
// 100-nanosecond intervals since January 1, 1601 (UTC)
// which means 0.1 us
GetSystemTimeAsFileTime(&ft);
tmpres |= ft.dwHighDateTime;
tmpres <<= 32;
tmpres |= ft.dwLowDateTime;
tmpres /= 10u; // convert to us
// January 1st, 1970 - January 1st, 1601 UTC ~ 369 years
// or 11644473600000000 us
static const uint64_t deltaepoch = 11644473600000000ull;
tmpres -= deltaepoch;
return tmpres;
#else
// 1-us intervals
return std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::high_resolution_clock::now().time_since_epoch())
.count();
#endif
}
static uint64_t timestamp() {
#ifdef _WIN32
LARGE_INTEGER li;
QueryPerformanceCounter(&li);
// there is an imprecision with the initial value,
// but what matters is that timestamps are monotonic and consistent
return static_cast<uint64_t>(li.QuadPart);
#else
// 1-us intervals
return std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
#endif
}
#ifdef _WIN32
static uint64_t update_frequency() {
LARGE_INTEGER li;
if (!QueryPerformanceFrequency(&li) || !li.QuadPart) {
// log something
std::terminate();
}
return static_cast<uint64_t>(li.QuadPart);
}
#endif
static const uint64_t zerotime_val = zerotime();
static const uint64_t offset_val = timestamp();
#ifdef _WIN32
static const uint64_t frequency_val = update_frequency();
#endif
uint64_t wpi::NowDefault() {
#ifdef _WIN32
assert(offset_val > 0u);
assert(frequency_val > 0u);
uint64_t delta = timestamp() - offset_val;
// because the frequency is in update per seconds, we have to multiply the
// delta by 1,000,000
uint64_t delta_in_us = delta * 1000000ull / frequency_val;
return delta_in_us + zerotime_val;
#else
return zerotime_val + timestamp() - offset_val;
#endif
}
static std::atomic<uint64_t (*)()> now_impl{wpi::NowDefault};
void wpi::SetNowImpl(uint64_t (*func)(void)) {
now_impl = func ? func : NowDefault;
}
uint64_t wpi::Now() { return (now_impl.load())(); }
extern "C" {
uint64_t WPI_NowDefault(void) { return wpi::NowDefault(); }
void WPI_SetNowImpl(uint64_t (*func)(void)) { wpi::SetNowImpl(func); }
uint64_t WPI_Now(void) { return wpi::Now(); }
} // extern "C"