| #ifndef AOS_COMMON_CONTROLS_POLYTOPE_H_ |
| #define AOS_COMMON_CONTROLS_POLYTOPE_H_ |
| |
| #include "Eigen/Dense" |
| #include "third_party/cddlib/lib-src/setoper.h" |
| #include "third_party/cddlib/lib-src/cdd.h" |
| |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/logging/matrix_logging.h" |
| |
| namespace aos { |
| namespace controls { |
| |
| // A number_of_dimensions dimensional polytope. |
| // This represents the region consisting of all points X such that H * X <= k. |
| // The vertices are calculated at construction time because we always use those |
| // and libcdd is annoying about calculating vertices. In particular, for some |
| // random-seeming polytopes it refuses to calculate the vertices completely. To |
| // avoid issues with that, using the "shifting" constructor is recommended |
| // whenever possible. |
| template <int number_of_dimensions> |
| class HPolytope { |
| public: |
| // Constructs a polytope given the H and k matrices. |
| // Do NOT use this to calculate a polytope derived from another one in a way |
| // another constructor can be used instead. |
| HPolytope( |
| const Eigen::Matrix<double, Eigen::Dynamic, number_of_dimensions> &H, |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> &k) |
| : H_(H), k_(k), vertices_(CalculateVertices(H, k)) {} |
| |
| // Constructs a polytope with H = other.H() * H_multiplier and |
| // k = other.k() + other.H() * k_shifter. |
| // This avoids calculating the vertices for the new H and k directly because |
| // that sometimes confuses libcdd depending on what exactly the new H and k |
| // are. |
| // |
| // This currently has the following restrictions (CHECKed internally) because |
| // we don't have uses for anything else: |
| // If number_of_dimensions is not 1, it must be 2, other.H() * |
| // H_multiplier.inverse() * k_shifter must have its first 2 columns and last |
| // 2 columns as opposites, and the 1st+2nd and 3rd+4th vertices must be |
| // normal to each other. |
| HPolytope(const HPolytope<number_of_dimensions> &other, |
| const Eigen::Matrix<double, number_of_dimensions, |
| number_of_dimensions> &H_multiplier, |
| const Eigen::Matrix<double, number_of_dimensions, 1> &k_shifter) |
| : H_(other.H() * H_multiplier), |
| k_(other.k() + other.H() * k_shifter), |
| vertices_( |
| ShiftVertices(CalculateVertices(H_, other.k()), |
| other.H() * H_multiplier.inverse() * k_shifter)) {} |
| |
| // This is an initialization function shared across all instantiations of this |
| // template. |
| // This must be called at least once before creating any instances. It is |
| // not thread-safe. |
| static void Init() { |
| dd_set_global_constants(); |
| } |
| |
| // Returns a reference to H. |
| const Eigen::Matrix<double, Eigen::Dynamic, number_of_dimensions> &H() const { |
| return H_; |
| } |
| |
| // Returns a reference to k. |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> &k() const { return k_; } |
| |
| // Returns the number of dimensions in the polytope. |
| int ndim() const { return number_of_dimensions; } |
| |
| // Returns the number of constraints currently in the polytope. |
| int num_constraints() const { return k_.rows(); } |
| |
| // Returns true if the point is inside the polytope. |
| bool IsInside(Eigen::Matrix<double, number_of_dimensions, 1> point) const; |
| |
| // Returns the list of vertices inside the polytope. |
| const Eigen::Matrix<double, number_of_dimensions, Eigen::Dynamic> &Vertices() |
| const { |
| return vertices_; |
| } |
| |
| private: |
| static Eigen::Matrix<double, number_of_dimensions, Eigen::Dynamic> |
| CalculateVertices( |
| const Eigen::Matrix<double, Eigen::Dynamic, number_of_dimensions> &H, |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> &k); |
| |
| static Eigen::Matrix<double, number_of_dimensions, Eigen::Dynamic> |
| ShiftVertices(const Eigen::Matrix<double, number_of_dimensions, |
| Eigen::Dynamic> &vertices, |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> &shift) { |
| static_assert(number_of_dimensions <= 2, "not implemented yet"); |
| if (vertices.cols() != number_of_dimensions * 2) { |
| LOG(FATAL, |
| "less vertices not supported yet: %zd vertices vs %d dimensions\n", |
| vertices.cols(), number_of_dimensions); |
| } |
| if (number_of_dimensions == 2) { |
| if ((shift.row(0) + shift.row(1)).norm() > 0.0001) { |
| LOG_MATRIX(FATAL, "bad shift amount", shift.row(0) + shift.row(1)); |
| } |
| if ((shift.row(2) + shift.row(3)).norm() > 0.0001) { |
| LOG_MATRIX(FATAL, "bad shift amount", shift.row(2) + shift.row(3)); |
| } |
| if (vertices.col(0).dot(vertices.col(1)) > 0.0001) { |
| ::Eigen::Matrix<double, number_of_dimensions, 2> bad; |
| bad.col(0) = vertices.col(0); |
| bad.col(1) = vertices.col(1); |
| LOG_MATRIX(FATAL, "bad vertices", bad); |
| } |
| if (vertices.col(2).dot(vertices.col(3)) > 0.0001) { |
| ::Eigen::Matrix<double, number_of_dimensions, 2> bad; |
| bad.col(0) = vertices.col(2); |
| bad.col(1) = vertices.col(3); |
| LOG_MATRIX(FATAL, "bad vertices", bad); |
| } |
| } |
| |
| Eigen::Matrix<double, number_of_dimensions, Eigen::Dynamic> r( |
| number_of_dimensions, vertices.cols()); |
| Eigen::Matrix<double, number_of_dimensions, 1> real_shift; |
| real_shift(0, 0) = shift(0, 0); |
| if (number_of_dimensions == 2) real_shift(1, 0) = shift(2, 0); |
| for (int i = 0; i < vertices.cols(); ++i) { |
| r.col(i) = vertices.col(i) + real_shift; |
| } |
| return r; |
| } |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, number_of_dimensions> H_; |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> k_; |
| |
| const Eigen::Matrix<double, number_of_dimensions, Eigen::Dynamic> vertices_; |
| }; |
| |
| template <int number_of_dimensions> |
| bool HPolytope<number_of_dimensions>::IsInside( |
| Eigen::Matrix<double, number_of_dimensions, 1> point) const { |
| auto ev = H_ * point; |
| for (int i = 0; i < num_constraints(); ++i) { |
| if (ev(i, 0) > k_(i, 0)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| template <int number_of_dimensions> |
| Eigen::Matrix<double, number_of_dimensions, Eigen::Dynamic> |
| HPolytope<number_of_dimensions>::CalculateVertices( |
| const Eigen::Matrix<double, Eigen::Dynamic, number_of_dimensions> &H, |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> &k) { |
| dd_MatrixPtr matrix = dd_CreateMatrix(k.rows(), number_of_dimensions + 1); |
| |
| // Copy the data over. TODO(aschuh): Is there a better way? I hate copying... |
| for (int i = 0; i < k.rows(); ++i) { |
| dd_set_d(matrix->matrix[i][0], k(i, 0)); |
| for (int j = 0; j < number_of_dimensions; ++j) { |
| dd_set_d(matrix->matrix[i][j + 1], -H(i, j)); |
| } |
| } |
| |
| matrix->representation = dd_Inequality; |
| matrix->numbtype = dd_Real; |
| |
| dd_ErrorType error; |
| dd_PolyhedraPtr polyhedra = dd_DDMatrix2Poly(matrix, &error); |
| if (error != dd_NoError || polyhedra == NULL) { |
| dd_WriteErrorMessages(stderr, error); |
| dd_FreeMatrix(matrix); |
| LOG_MATRIX(ERROR, "bad H", H); |
| LOG_MATRIX(ERROR, "bad k_", k); |
| LOG(FATAL, "dd_DDMatrix2Poly failed\n"); |
| } |
| |
| dd_MatrixPtr vertex_matrix = dd_CopyGenerators(polyhedra); |
| |
| int num_vertices = 0; |
| int num_rays = 0; |
| for (int i = 0; i < vertex_matrix->rowsize; ++i) { |
| if (dd_get_d(vertex_matrix->matrix[i][0]) == 0) { |
| num_rays += 1; |
| } else { |
| num_vertices += 1; |
| } |
| } |
| |
| // Rays are unsupported right now. This may change in the future. |
| CHECK_EQ(0, num_rays); |
| |
| Eigen::Matrix<double, number_of_dimensions, Eigen::Dynamic> vertices( |
| number_of_dimensions, num_vertices); |
| |
| int vertex_index = 0; |
| for (int i = 0; i < vertex_matrix->rowsize; ++i) { |
| if (dd_get_d(vertex_matrix->matrix[i][0]) != 0) { |
| for (int j = 0; j < number_of_dimensions; ++j) { |
| vertices(j, vertex_index) = dd_get_d(vertex_matrix->matrix[i][j + 1]); |
| } |
| ++vertex_index; |
| } |
| } |
| dd_FreeMatrix(vertex_matrix); |
| dd_FreePolyhedra(polyhedra); |
| dd_FreeMatrix(matrix); |
| |
| return vertices; |
| } |
| |
| } // namespace controls |
| } // namespace aos |
| |
| #endif // AOS_COMMON_CONTROLS_POLYTOPE_H_ |