blob: 77e1ba9f47cfcb0d7011f9c0f731afcf4a3a3569 [file] [log] [blame]
#include "y2020/vision/charuco_lib.h"
#include <chrono>
#include <functional>
#include <string_view>
#include <opencv2/core/eigen.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include "aos/events/event_loop.h"
#include "aos/flatbuffers.h"
#include "aos/network/team_number.h"
#include "frc971/control_loops/quaternion_utils.h"
#include "glog/logging.h"
#include "y2020/vision/sift/sift_generated.h"
#include "y2020/vision/sift/sift_training_generated.h"
#include "y2020/vision/tools/python_code/sift_training_data.h"
#include "y2020/vision/vision_generated.h"
DEFINE_uint32(min_targets, 10,
"The mininum number of targets required to match.");
DEFINE_bool(large_board, true, "If true, use the large calibration board.");
DEFINE_bool(coarse_pattern, true, "If true, use coarse arucos; else, use fine");
DEFINE_string(board_template_path, "",
"If specified, write an image to the specified path for the "
"charuco board pattern.");
namespace frc971 {
namespace vision {
namespace chrono = std::chrono;
using aos::monotonic_clock;
CameraCalibration::CameraCalibration(
const absl::Span<const uint8_t> training_data_bfbs, std::string_view pi) {
const aos::FlatbufferSpan<sift::TrainingData> training_data(
training_data_bfbs);
CHECK(training_data.Verify());
camera_calibration_ = FindCameraCalibration(&training_data.message(), pi);
}
cv::Mat CameraCalibration::CameraIntrinsics() const {
const cv::Mat result(3, 3, CV_32F,
const_cast<void *>(static_cast<const void *>(
camera_calibration_->intrinsics()->data())));
CHECK_EQ(result.total(), camera_calibration_->intrinsics()->size());
return result;
}
Eigen::Matrix3d CameraCalibration::CameraIntrinsicsEigen() const {
cv::Mat camera_intrinsics = CameraIntrinsics();
Eigen::Matrix3d result;
cv::cv2eigen(camera_intrinsics, result);
return result;
}
cv::Mat CameraCalibration::CameraDistCoeffs() const {
const cv::Mat result(5, 1, CV_32F,
const_cast<void *>(static_cast<const void *>(
camera_calibration_->dist_coeffs()->data())));
CHECK_EQ(result.total(), camera_calibration_->dist_coeffs()->size());
return result;
}
const sift::CameraCalibration *CameraCalibration::FindCameraCalibration(
const sift::TrainingData *const training_data, std::string_view pi) const {
std::optional<uint16_t> pi_number = aos::network::ParsePiNumber(pi);
std::optional<uint16_t> team_number =
aos::network::team_number_internal::ParsePiTeamNumber(pi);
CHECK(pi_number);
CHECK(team_number);
const std::string node_name = absl::StrFormat("pi%d", pi_number.value());
LOG(INFO) << "Looking for node name " << node_name << " team number "
<< team_number.value();
for (const sift::CameraCalibration *candidate :
*training_data->camera_calibrations()) {
if (candidate->node_name()->string_view() != node_name) {
continue;
}
if (candidate->team_number() != team_number.value()) {
continue;
}
return candidate;
}
LOG(FATAL) << ": Failed to find camera calibration for " << node_name
<< " on " << team_number.value();
}
ImageCallback::ImageCallback(
aos::EventLoop *event_loop, std::string_view channel,
std::function<void(cv::Mat, monotonic_clock::time_point)> &&fn)
: event_loop_(event_loop),
server_fetcher_(
event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
"/aos")),
source_node_(aos::configuration::GetNode(
event_loop_->configuration(),
event_loop_->GetChannel<CameraImage>(channel)
->source_node()
->string_view())),
handle_image_(std::move(fn)) {
event_loop_->MakeWatcher(channel, [this](const CameraImage &image) {
const monotonic_clock::time_point eof_source_node =
monotonic_clock::time_point(
chrono::nanoseconds(image.monotonic_timestamp_ns()));
server_fetcher_.Fetch();
if (!server_fetcher_.get()) {
return;
}
chrono::nanoseconds offset{0};
if (source_node_ != event_loop_->node()) {
// If we are viewing this image from another node, convert to our
// monotonic clock.
const aos::message_bridge::ServerConnection *server_connection = nullptr;
for (const aos::message_bridge::ServerConnection *connection :
*server_fetcher_->connections()) {
CHECK(connection->has_node());
if (connection->node()->name()->string_view() ==
source_node_->name()->string_view()) {
server_connection = connection;
break;
}
}
CHECK(server_connection != nullptr) << ": Failed to find client";
if (!server_connection->has_monotonic_offset()) {
VLOG(1) << "No offset yet.";
return;
}
offset = chrono::nanoseconds(server_connection->monotonic_offset());
}
const monotonic_clock::time_point eof = eof_source_node - offset;
const monotonic_clock::duration age =
event_loop_->monotonic_now() - eof;
const double age_double =
std::chrono::duration_cast<std::chrono::duration<double>>(age).count();
if (age > std::chrono::milliseconds(100)) {
LOG(INFO) << "Age: " << age_double << ", getting behind, skipping";
return;
}
// Create color image:
cv::Mat image_color_mat(cv::Size(image.cols(), image.rows()), CV_8UC2,
(void *)image.data()->data());
const cv::Size image_size(image.cols(), image.rows());
cv::Mat rgb_image(image_size, CV_8UC3);
cv::cvtColor(image_color_mat, rgb_image, CV_YUV2BGR_YUYV);
handle_image_(rgb_image, eof);
});
}
CharucoExtractor::CharucoExtractor(
aos::EventLoop *event_loop, std::string_view pi,
std::function<void(cv::Mat, monotonic_clock::time_point, std::vector<int>,
std::vector<cv::Point2f>, bool, Eigen::Vector3d,
Eigen::Vector3d)> &&fn)
: event_loop_(event_loop),
calibration_(SiftTrainingData(), pi),
dictionary_(cv::aruco::getPredefinedDictionary(
FLAGS_large_board ? cv::aruco::DICT_5X5_250
: cv::aruco::DICT_6X6_250)),
board_(
FLAGS_large_board
? (FLAGS_coarse_pattern ? cv::aruco::CharucoBoard::create(
12, 9, 0.06, 0.04666, dictionary_)
: cv::aruco::CharucoBoard::create(
25, 18, 0.03, 0.0233, dictionary_))
: (FLAGS_coarse_pattern ? cv::aruco::CharucoBoard::create(
7, 5, 0.04, 0.025, dictionary_)
// TODO(jim): Need to figure out what size
// is for small board, fine pattern
: cv::aruco::CharucoBoard::create(
7, 5, 0.03, 0.0233, dictionary_))),
camera_matrix_(calibration_.CameraIntrinsics()),
eigen_camera_matrix_(calibration_.CameraIntrinsicsEigen()),
dist_coeffs_(calibration_.CameraDistCoeffs()),
pi_number_(aos::network::ParsePiNumber(pi)),
image_callback_(
event_loop,
absl::StrCat("/pi", std::to_string(pi_number_.value()), "/camera"),
[this](cv::Mat rgb_image, const monotonic_clock::time_point eof) {
HandleImage(rgb_image, eof);
}),
handle_charuco_(std::move(fn)) {
LOG(INFO) << "Using " << (FLAGS_large_board ? "large" : "small")
<< " board with " << (FLAGS_coarse_pattern ? "coarse" : "fine")
<< " pattern";
if (!FLAGS_board_template_path.empty()) {
cv::Mat board_image;
board_->draw(cv::Size(600, 500), board_image, 10, 1);
cv::imwrite(FLAGS_board_template_path, board_image);
}
LOG(INFO) << "Camera matrix " << camera_matrix_;
LOG(INFO) << "Distortion Coefficients " << dist_coeffs_;
CHECK(pi_number_) << ": Invalid pi number " << pi
<< ", failed to parse pi number";
LOG(INFO) << "Connecting to channel /pi" << pi_number_.value() << "/camera";
}
void CharucoExtractor::HandleImage(cv::Mat rgb_image,
const monotonic_clock::time_point eof) {
const double age_double =
std::chrono::duration_cast<std::chrono::duration<double>>(
event_loop_->monotonic_now() - eof)
.count();
std::vector<int> marker_ids;
std::vector<std::vector<cv::Point2f>> marker_corners;
cv::aruco::detectMarkers(rgb_image, board_->dictionary, marker_corners,
marker_ids);
std::vector<cv::Point2f> charuco_corners;
std::vector<int> charuco_ids;
bool valid = false;
Eigen::Vector3d rvec_eigen = Eigen::Vector3d::Zero();
Eigen::Vector3d tvec_eigen = Eigen::Vector3d::Zero();
// If at least one marker detected
if (marker_ids.size() >= FLAGS_min_targets) {
// Run everything twice, once with the calibration, and once
// without. This lets us both calibrate, and also print out the pose
// real time with the previous calibration.
cv::aruco::interpolateCornersCharuco(marker_corners, marker_ids, rgb_image,
board_, charuco_corners, charuco_ids);
std::vector<cv::Point2f> charuco_corners_with_calibration;
std::vector<int> charuco_ids_with_calibration;
cv::aruco::interpolateCornersCharuco(
marker_corners, marker_ids, rgb_image, board_,
charuco_corners_with_calibration, charuco_ids_with_calibration,
camera_matrix_, dist_coeffs_);
cv::aruco::drawDetectedMarkers(rgb_image, marker_corners, marker_ids);
if (charuco_ids.size() >= FLAGS_min_targets) {
cv::aruco::drawDetectedCornersCharuco(rgb_image, charuco_corners,
charuco_ids, cv::Scalar(255, 0, 0));
cv::Vec3d rvec, tvec;
valid = cv::aruco::estimatePoseCharucoBoard(
charuco_corners_with_calibration, charuco_ids_with_calibration,
board_, camera_matrix_, dist_coeffs_, rvec, tvec);
// if charuco pose is valid
if (valid) {
cv::cv2eigen(rvec, rvec_eigen);
cv::cv2eigen(tvec, tvec_eigen);
Eigen::Quaternion<double> rotation(
frc971::controls::ToQuaternionFromRotationVector(rvec_eigen));
Eigen::Translation3d translation(tvec_eigen);
const Eigen::Affine3d board_to_camera = translation * rotation;
Eigen::Matrix<double, 3, 4> camera_projection =
Eigen::Matrix<double, 3, 4>::Identity();
Eigen::Vector3d result = eigen_camera_matrix_ * camera_projection *
board_to_camera * Eigen::Vector3d::Zero();
result /= result.z();
cv::circle(rgb_image, cv::Point(result.x(), result.y()), 4,
cv::Scalar(255, 255, 255), 0, cv::LINE_8);
cv::aruco::drawAxis(rgb_image, camera_matrix_, dist_coeffs_, rvec, tvec,
0.1);
} else {
LOG(INFO) << "Age: " << age_double << ", invalid pose";
}
} else {
LOG(INFO) << "Age: " << age_double << ", not enough charuco IDs, got "
<< charuco_ids.size() << ", needed " << FLAGS_min_targets;
}
} else {
LOG(INFO) << "Age: " << age_double << ", not enough marker IDs, got "
<< marker_ids.size() << ", needed " << FLAGS_min_targets;
cv::aruco::drawDetectedMarkers(rgb_image, marker_corners, marker_ids);
}
handle_charuco_(rgb_image, eof, charuco_ids, charuco_corners, valid,
rvec_eigen, tvec_eigen);
}
} // namespace vision
} // namespace frc971