| #include "y2017/control_loops/superstructure/column/column.h" |
| |
| #include <array> |
| #include <chrono> |
| #include <memory> |
| #include <utility> |
| |
| #include "Eigen/Dense" |
| |
| #include "aos/commonmath.h" |
| #include "frc971/constants.h" |
| #include "frc971/control_loops/profiled_subsystem.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| #include "y2017/control_loops/superstructure/column/column_integral_plant.h" |
| #include "y2017/control_loops/superstructure/column/stuck_column_integral_plant.h" |
| |
| namespace y2017 { |
| namespace control_loops { |
| namespace superstructure { |
| namespace column { |
| |
| namespace chrono = ::std::chrono; |
| using ::aos::monotonic_clock; |
| using ::frc971::zeroing::PulseIndexZeroingEstimator; |
| |
| namespace { |
| constexpr double kTolerance = 10.0; |
| constexpr double kIndexerAcceleration = 50.0; |
| constexpr chrono::milliseconds kForwardTimeout{500}; |
| constexpr chrono::milliseconds kReverseTimeout{1000}; |
| constexpr chrono::milliseconds kReverseMinTimeout{500}; |
| } // namespace |
| |
| constexpr double Column::kZeroingVoltage; |
| constexpr double Column::kOperatingVoltage; |
| constexpr double Column::kIntakeZeroingMinDistance; |
| constexpr double Column::kIntakeTolerance; |
| constexpr double Column::kStuckZeroingTrackingError; |
| |
| ColumnProfiledSubsystem::ColumnProfiledSubsystem( |
| ::std::unique_ptr< |
| ::frc971::control_loops::SimpleCappedStateFeedbackLoop<6, 2, 2>> |
| loop, |
| const ::y2017::constants::Values::Column &zeroing_constants, |
| const ::frc971::constants::Range &range, double default_velocity, |
| double default_acceleration) |
| : ProfiledSubsystem<6, 1, ColumnZeroingEstimator, 2, 2>( |
| ::std::move(loop), {{zeroing_constants}}), |
| stuck_indexer_detector_(new StateFeedbackLoop<6, 2, 2>( |
| column::MakeStuckIntegralColumnLoop())), |
| profile_(::aos::controls::kLoopFrequency), |
| range_(range), |
| default_velocity_(default_velocity), |
| default_acceleration_(default_acceleration) { |
| Y_.setZero(); |
| offset_.setZero(); |
| X_hat_current_.setZero(); |
| stuck_indexer_X_hat_current_.setZero(); |
| indexer_history_.fill(0); |
| AdjustProfile(0.0, 0.0); |
| } |
| |
| void ColumnProfiledSubsystem::AddOffset(double indexer_offset_delta, |
| double turret_offset_delta) { |
| UpdateOffset(offset_(0, 0) + indexer_offset_delta, |
| offset_(1, 0) + turret_offset_delta); |
| } |
| |
| void ColumnProfiledSubsystem::UpdateOffset(double indexer_offset, |
| double turret_offset) { |
| const double indexer_doffset = indexer_offset - offset_(0, 0); |
| const double turret_doffset = turret_offset - offset_(1, 0); |
| |
| LOG(INFO, "Adjusting indexer offset from %f to %f\n", offset_(0, 0), |
| indexer_offset); |
| LOG(INFO, "Adjusting turret offset from %f to %f\n", offset_(1, 0), |
| turret_offset); |
| |
| loop_->mutable_X_hat()(0, 0) += indexer_doffset; |
| loop_->mutable_X_hat()(2, 0) += turret_doffset + indexer_doffset; |
| |
| stuck_indexer_detector_->mutable_X_hat()(0, 0) += indexer_doffset; |
| stuck_indexer_detector_->mutable_X_hat()(2, 0) += |
| turret_doffset + indexer_doffset; |
| Y_(0, 0) += indexer_doffset; |
| Y_(1, 0) += turret_doffset; |
| turret_last_position_ += turret_doffset + indexer_doffset; |
| loop_->mutable_R(0, 0) += indexer_doffset; |
| loop_->mutable_R(2, 0) += turret_doffset + indexer_doffset; |
| |
| profile_.MoveGoal(turret_doffset + indexer_doffset); |
| offset_(0, 0) = indexer_offset; |
| offset_(1, 0) = turret_offset; |
| |
| CapGoal("R", &loop_->mutable_R()); |
| } |
| |
| void ColumnProfiledSubsystem::Correct(const ColumnPosition &new_position) { |
| estimators_[0].UpdateEstimate(new_position); |
| |
| if (estimators_[0].error()) { |
| LOG(ERROR, "zeroing error\n"); |
| return; |
| } |
| |
| if (!initialized_) { |
| if (estimators_[0].offset_ready()) { |
| UpdateOffset(estimators_[0].indexer_offset(), |
| estimators_[0].turret_offset()); |
| initialized_ = true; |
| } |
| } |
| |
| if (!zeroed(0) && estimators_[0].zeroed()) { |
| UpdateOffset(estimators_[0].indexer_offset(), |
| estimators_[0].turret_offset()); |
| set_zeroed(0, true); |
| } |
| |
| turret_last_position_ = turret_position(); |
| Y_ << new_position.indexer.position, new_position.turret.position; |
| Y_ += offset_; |
| loop_->Correct(Y_); |
| |
| indexer_history_[indexer_history_position_] = new_position.indexer.position; |
| indexer_history_position_ = (indexer_history_position_ + 1) % kHistoryLength; |
| |
| indexer_dt_velocity_ = |
| (new_position.indexer.position - indexer_last_position_) / |
| chrono::duration_cast<chrono::duration<double>>( |
| ::aos::controls::kLoopFrequency) |
| .count(); |
| indexer_last_position_ = new_position.indexer.position; |
| |
| stuck_indexer_detector_->Correct(Y_); |
| |
| // Compute the oldest point in the history. |
| const int indexer_oldest_history_position = |
| ((indexer_history_position_ == 0) ? kHistoryLength |
| : indexer_history_position_) - |
| 1; |
| |
| // Compute the distance moved over that time period. |
| indexer_average_angular_velocity_ = |
| (indexer_history_[indexer_oldest_history_position] - |
| indexer_history_[indexer_history_position_]) / |
| (chrono::duration_cast<chrono::duration<double>>( |
| ::aos::controls::kLoopFrequency) |
| .count() * |
| static_cast<double>(kHistoryLength - 1)); |
| |
| // Ready if average angular velocity is close to the goal. |
| indexer_error_ = indexer_average_angular_velocity_ - unprofiled_goal_(1, 0); |
| |
| indexer_ready_ = |
| std::abs(indexer_error_) < kTolerance && unprofiled_goal_(1, 0) > 0.1; |
| |
| // Pull state from the profiled subsystem. |
| X_hat_current_ = controller().X_hat(); |
| stuck_indexer_X_hat_current_ = stuck_indexer_detector_->X_hat(); |
| indexer_position_error_ = X_hat_current_(0, 0) - Y(0, 0); |
| } |
| |
| void ColumnProfiledSubsystem::CapGoal(const char *name, |
| Eigen::Matrix<double, 6, 1> *goal) { |
| // Limit the goal to min/max allowable positions. |
| if (zeroed()) { |
| if ((*goal)(2, 0) > range_.upper) { |
| LOG(WARNING, "Goal %s above limit, %f > %f\n", name, (*goal)(2, 0), |
| range_.upper); |
| (*goal)(2, 0) = range_.upper; |
| } |
| if ((*goal)(2, 0) < range_.lower) { |
| LOG(WARNING, "Goal %s below limit, %f < %f\n", name, (*goal)(2, 0), |
| range_.lower); |
| (*goal)(2, 0) = range_.lower; |
| } |
| } else { |
| const double kMaxRange = range().upper_hard - range().lower_hard; |
| |
| // Limit the goal to min/max allowable positions much less agressively. |
| // We don't know where the limits are, so we have to let the user move far |
| // enough to find them (and the index pulse which might be right next to |
| // one). |
| // Upper - lower hard may be a bit generous, but we are moving slow. |
| |
| if ((*goal)(2, 0) > kMaxRange) { |
| LOG(WARNING, "Goal %s above limit, %f > %f\n", name, (*goal)(2, 0), |
| kMaxRange); |
| (*goal)(2, 0) = kMaxRange; |
| } |
| if ((*goal)(2, 0) < -kMaxRange) { |
| LOG(WARNING, "Goal %s below limit, %f < %f\n", name, (*goal)(2, 0), |
| -kMaxRange); |
| (*goal)(2, 0) = -kMaxRange; |
| } |
| } |
| } |
| |
| void ColumnProfiledSubsystem::ForceGoal(double goal_velocity, double goal) { |
| set_unprofiled_goal(goal_velocity, goal); |
| loop_->mutable_R() = unprofiled_goal_; |
| loop_->mutable_next_R() = loop_->R(); |
| |
| const ::Eigen::Matrix<double, 6, 1> &R = loop_->R(); |
| profile_.MoveCurrentState(R.block<2, 1>(2, 0)); |
| } |
| |
| void ColumnProfiledSubsystem::set_unprofiled_goal(double goal_velocity, |
| double unprofiled_goal) { |
| unprofiled_goal_(0, 0) = 0.0; |
| unprofiled_goal_(1, 0) = goal_velocity; |
| unprofiled_goal_(2, 0) = unprofiled_goal; |
| unprofiled_goal_(3, 0) = 0.0; |
| unprofiled_goal_(4, 0) = 0.0; |
| unprofiled_goal_(5, 0) = 0.0; |
| CapGoal("unprofiled R", &unprofiled_goal_); |
| } |
| |
| void ColumnProfiledSubsystem::set_indexer_unprofiled_goal( |
| double goal_velocity) { |
| unprofiled_goal_(0, 0) = 0.0; |
| unprofiled_goal_(1, 0) = goal_velocity; |
| unprofiled_goal_(4, 0) = 0.0; |
| CapGoal("unprofiled R", &unprofiled_goal_); |
| } |
| |
| void ColumnProfiledSubsystem::set_turret_unprofiled_goal( |
| double unprofiled_goal) { |
| unprofiled_goal_(2, 0) = unprofiled_goal; |
| unprofiled_goal_(3, 0) = 0.0; |
| unprofiled_goal_(5, 0) = 0.0; |
| CapGoal("unprofiled R", &unprofiled_goal_); |
| } |
| |
| void ColumnProfiledSubsystem::Update(bool disable) { |
| // TODO(austin): If we really need to reset, reset the profiles, etc. That'll |
| // be covered by the layer above when disabled though, so we can get away with |
| // not doing it yet. |
| if (should_reset_) { |
| loop_->mutable_X_hat(0, 0) = Y_(0, 0); |
| loop_->mutable_X_hat(1, 0) = 0.0; |
| loop_->mutable_X_hat(2, 0) = Y_(0, 0) + Y_(1, 0); |
| loop_->mutable_X_hat(3, 0) = 0.0; |
| loop_->mutable_X_hat(4, 0) = 0.0; |
| loop_->mutable_X_hat(5, 0) = 0.0; |
| |
| LOG(INFO, "Resetting\n"); |
| stuck_indexer_detector_->mutable_X_hat() = loop_->X_hat(); |
| should_reset_ = false; |
| saturated_ = false; |
| } |
| |
| if (!disable) { |
| ::Eigen::Matrix<double, 2, 1> goal_state = |
| profile_.Update(unprofiled_goal_(2, 0), unprofiled_goal_(3, 0)); |
| |
| constexpr double kDt = chrono::duration_cast<chrono::duration<double>>( |
| ::aos::controls::kLoopFrequency) |
| .count(); |
| |
| loop_->mutable_next_R(0, 0) = 0.0; |
| // TODO(austin): This might not handle saturation right, but I'm not sure I |
| // really care. |
| loop_->mutable_next_R(1, 0) = ::aos::Clip( |
| unprofiled_goal_(1, 0), loop_->R(1, 0) - kIndexerAcceleration * kDt, |
| loop_->R(1, 0) + kIndexerAcceleration * kDt); |
| loop_->mutable_next_R(2, 0) = goal_state(0, 0); |
| loop_->mutable_next_R(3, 0) = goal_state(1, 0); |
| loop_->mutable_next_R(4, 0) = 0.0; |
| loop_->mutable_next_R(5, 0) = 0.0; |
| CapGoal("next R", &loop_->mutable_next_R()); |
| } |
| |
| // If the indexer goal velocity is low, switch to the indexer controller which |
| // won't fight to keep it moving at 0. |
| if (::std::abs(unprofiled_goal_(1, 0)) < 0.1) { |
| loop_->set_index(1); |
| } else { |
| loop_->set_index(0); |
| } |
| loop_->Update(disable); |
| |
| if (!disable && loop_->U(1, 0) != loop_->U_uncapped(1, 0)) { |
| const ::Eigen::Matrix<double, 6, 1> &R = loop_->R(); |
| profile_.MoveCurrentState(R.block<2, 1>(2, 0)); |
| saturated_ = true; |
| } else { |
| saturated_ = false; |
| } |
| |
| // Run the KF predict step. |
| stuck_indexer_detector_->UpdateObserver(loop_->U(), |
| ::aos::controls::kLoopFrequency); |
| } |
| |
| bool ColumnProfiledSubsystem::CheckHardLimits() { |
| // Returns whether hard limits have been exceeded. |
| |
| if (turret_position() > range_.upper_hard || turret_position() < range_.lower_hard) { |
| LOG(ERROR, |
| "ColumnProfiledSubsystem at %f out of bounds [%f, %f], ESTOPing\n", |
| turret_position(), range_.lower_hard, range_.upper_hard); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void ColumnProfiledSubsystem::AdjustProfile( |
| const ::frc971::ProfileParameters &profile_parameters) { |
| AdjustProfile(profile_parameters.max_velocity, |
| profile_parameters.max_acceleration); |
| } |
| |
| void ColumnProfiledSubsystem::AdjustProfile(double max_angular_velocity, |
| double max_angular_acceleration) { |
| profile_.set_maximum_velocity( |
| ::frc971::control_loops::internal::UseUnlessZero(max_angular_velocity, |
| default_velocity_)); |
| profile_.set_maximum_acceleration( |
| ::frc971::control_loops::internal::UseUnlessZero(max_angular_acceleration, |
| default_acceleration_)); |
| } |
| |
| double ColumnProfiledSubsystem::IndexerStuckVoltage() const { |
| // Compute the voltage from the control loop, excluding the voltage error |
| // term. |
| const double uncapped_applied_voltage = |
| uncapped_indexer_voltage() + X_hat(4, 0); |
| if (uncapped_applied_voltage < 0) { |
| return +stuck_indexer_X_hat_current_(4, 0); |
| } else { |
| return -stuck_indexer_X_hat_current_(4, 0); |
| } |
| } |
| bool ColumnProfiledSubsystem::IsIndexerStuck() const { |
| return IndexerStuckVoltage() > 4.0; |
| } |
| |
| void ColumnProfiledSubsystem::PartialIndexerReset() { |
| mutable_X_hat(4, 0) = 0.0; |
| stuck_indexer_detector_->mutable_X_hat(4, 0) = 0.0; |
| // Screw it, we are stuck. Reset the current goal to the current velocity so |
| // we start slewing faster to reverse if we have stopped. |
| loop_->mutable_R(1, 0) = X_hat(1, 0); |
| loop_->mutable_next_R(1, 0) = X_hat(1, 0); |
| } |
| |
| void ColumnProfiledSubsystem::PartialTurretReset() { |
| mutable_X_hat(5, 0) = 0.0; |
| stuck_indexer_detector_->mutable_X_hat(5, 0) = 0.0; |
| } |
| |
| void ColumnProfiledSubsystem::PopulateIndexerStatus(IndexerStatus *status) { |
| status->avg_angular_velocity = indexer_average_angular_velocity_; |
| |
| status->angular_velocity = X_hat_current_(1, 0); |
| status->ready = indexer_ready_; |
| |
| status->voltage_error = X_hat_current_(4, 0); |
| status->stuck_voltage_error = stuck_indexer_X_hat_current_(4, 0); |
| status->position_error = indexer_position_error_; |
| status->instantaneous_velocity = indexer_dt_velocity_; |
| |
| status->stuck = IsIndexerStuck(); |
| |
| status->stuck_voltage = IndexerStuckVoltage(); |
| } |
| |
| Column::Column() |
| : profiled_subsystem_( |
| ::std::unique_ptr< |
| ::frc971::control_loops::SimpleCappedStateFeedbackLoop<6, 2, 2>>( |
| new ::frc971::control_loops::SimpleCappedStateFeedbackLoop< |
| 6, 2, 2>(MakeIntegralColumnLoop())), |
| constants::GetValues().column, constants::Values::kTurretRange, 7.0, |
| 50.0), |
| vision_error_(constants::GetValues().vision_error) {} |
| |
| void Column::Reset() { |
| state_ = State::UNINITIALIZED; |
| indexer_state_ = IndexerState::RUNNING; |
| profiled_subsystem_.Reset(); |
| // intake will automatically clear the minimum position on reset, so we don't |
| // need to do it here. |
| freeze_ = false; |
| } |
| |
| void Column::Iterate(const control_loops::IndexerGoal *unsafe_indexer_goal, |
| const control_loops::TurretGoal *unsafe_turret_goal, |
| const ColumnPosition *position, |
| const vision::VisionStatus *vision_status, |
| double *indexer_output, double *turret_output, |
| IndexerStatus *indexer_status, |
| TurretProfiledSubsystemStatus *turret_status, |
| intake::Intake *intake) { |
| bool disable = turret_output == nullptr || indexer_output == nullptr; |
| profiled_subsystem_.Correct(*position); |
| |
| vision_time_adjuster_.Tick(::aos::monotonic_clock::now(), |
| profiled_subsystem_.X_hat(2, 0), vision_status); |
| |
| switch (state_) { |
| case State::UNINITIALIZED: |
| // Wait in the uninitialized state until the turret is initialized. |
| // Set the goals to where we are now so when we start back up, we don't |
| // jump. |
| profiled_subsystem_.ForceGoal(0.0, profiled_subsystem_.turret_position()); |
| state_ = State::ZEROING_UNINITIALIZED; |
| |
| // Fall through so we can start the zeroing process immediately. |
| |
| case State::ZEROING_UNINITIALIZED: |
| // Set up the profile to be the zeroing profile. |
| profiled_subsystem_.AdjustProfile(0.50, 3); |
| |
| // Force the intake out. |
| intake->set_min_position(kIntakeZeroingMinDistance); |
| |
| if (disable) { |
| // If we are disabled, we want to reset the turret to stay where it |
| // currently is. |
| profiled_subsystem_.ForceGoal(0.0, |
| profiled_subsystem_.turret_position()); |
| } else if (profiled_subsystem_.initialized()) { |
| // If we are initialized, there's no value in continuing to move so stop |
| // and wait on the intake. |
| profiled_subsystem_.set_indexer_unprofiled_goal(0.0); |
| } else { |
| // Spin slowly backwards. |
| profiled_subsystem_.set_indexer_unprofiled_goal(2.0); |
| } |
| |
| // See if we are zeroed or initialized and far enough out and execute the |
| // proper state transition. |
| if (profiled_subsystem_.zeroed()) { |
| intake->clear_min_position(); |
| state_ = State::RUNNING; |
| } else if (profiled_subsystem_.initialized() && |
| intake->position() > |
| kIntakeZeroingMinDistance - kIntakeTolerance) { |
| if (profiled_subsystem_.turret_position() > 0) { |
| // We need to move in the negative direction. |
| state_ = State::ZEROING_NEGATIVE; |
| } else { |
| // We need to move in the positive direction. |
| state_ = State::ZEROING_POSITIVE; |
| } |
| } |
| break; |
| |
| case State::ZEROING_POSITIVE: |
| // We are now going to be moving in the positive direction towards 0. If |
| // we get close enough, we'll zero. |
| profiled_subsystem_.set_unprofiled_goal(0.0, 0.0); |
| intake->set_min_position(kIntakeZeroingMinDistance); |
| |
| if (profiled_subsystem_.zeroed()) { |
| intake->clear_min_position(); |
| state_ = State::RUNNING; |
| } else if (disable) { |
| // We are disabled, so pick back up from the current position. |
| profiled_subsystem_.ForceGoal(0.0, |
| profiled_subsystem_.turret_position()); |
| } else if (profiled_subsystem_.turret_position() < |
| profiled_subsystem_.goal(2, 0) - |
| kStuckZeroingTrackingError || |
| profiled_subsystem_.saturated()) { |
| LOG(INFO, |
| "Turret stuck going positive, switching directions. At %f, goal " |
| "%f\n", |
| profiled_subsystem_.turret_position(), |
| profiled_subsystem_.goal(2, 0)); |
| // The turret got too far behind. Declare it stuck and reverse. |
| profiled_subsystem_.AddOffset(0.0, 2.0 * M_PI); |
| profiled_subsystem_.set_unprofiled_goal(0.0, 0.0); |
| profiled_subsystem_.ForceGoal(0.0, |
| profiled_subsystem_.turret_position()); |
| profiled_subsystem_.PartialTurretReset(); |
| profiled_subsystem_.PartialIndexerReset(); |
| state_ = State::ZEROING_NEGATIVE; |
| } |
| break; |
| |
| case State::ZEROING_NEGATIVE: |
| // We are now going to be moving in the negative direction towards 0. If |
| // we get close enough, we'll zero. |
| profiled_subsystem_.set_unprofiled_goal(0.0, 0.0); |
| intake->set_min_position(kIntakeZeroingMinDistance); |
| |
| if (profiled_subsystem_.zeroed()) { |
| intake->clear_min_position(); |
| state_ = State::RUNNING; |
| } else if (disable) { |
| // We are disabled, so pick back up from the current position. |
| profiled_subsystem_.ForceGoal(0.0, |
| profiled_subsystem_.turret_position()); |
| } else if (profiled_subsystem_.turret_position() > |
| profiled_subsystem_.goal(2, 0) + |
| kStuckZeroingTrackingError || |
| profiled_subsystem_.saturated()) { |
| // The turret got too far behind. Declare it stuck and reverse. |
| LOG(INFO, |
| "Turret stuck going negative, switching directions. At %f, goal " |
| "%f\n", |
| profiled_subsystem_.turret_position(), |
| profiled_subsystem_.goal(2, 0)); |
| profiled_subsystem_.AddOffset(0.0, -2.0 * M_PI); |
| profiled_subsystem_.set_unprofiled_goal(0.0, 0.0); |
| profiled_subsystem_.ForceGoal(0.0, |
| profiled_subsystem_.turret_position()); |
| profiled_subsystem_.PartialTurretReset(); |
| profiled_subsystem_.PartialIndexerReset(); |
| state_ = State::ZEROING_POSITIVE; |
| } |
| break; |
| |
| case State::RUNNING: { |
| double starting_goal_angle = profiled_subsystem_.goal(2, 0); |
| if (disable) { |
| // Reset the profile to the current position so it starts from here when |
| // we get re-enabled. |
| profiled_subsystem_.ForceGoal(0.0, |
| profiled_subsystem_.turret_position()); |
| } |
| |
| if (unsafe_turret_goal && unsafe_indexer_goal) { |
| profiled_subsystem_.AdjustProfile(unsafe_turret_goal->profile_params); |
| profiled_subsystem_.set_unprofiled_goal( |
| unsafe_indexer_goal->angular_velocity, unsafe_turret_goal->angle); |
| |
| if (unsafe_turret_goal->track) { |
| if (vision_time_adjuster_.valid()) { |
| LOG(INFO, "Vision aligning to %f\n", vision_time_adjuster_.goal()); |
| profiled_subsystem_.set_turret_unprofiled_goal( |
| vision_time_adjuster_.goal() + vision_error_); |
| } |
| } else { |
| vision_time_adjuster_.ResetTime(); |
| } |
| |
| if (freeze_) { |
| profiled_subsystem_.ForceGoal(unsafe_indexer_goal->angular_velocity, |
| starting_goal_angle); |
| } |
| } |
| |
| // ESTOP if we hit the hard limits. |
| if (profiled_subsystem_.CheckHardLimits() || |
| profiled_subsystem_.error()) { |
| state_ = State::ESTOP; |
| } |
| } break; |
| |
| case State::ESTOP: |
| LOG(ERROR, "Estop\n"); |
| disable = true; |
| break; |
| } |
| |
| // Start indexing at the suggested velocity. |
| // If a "stuck" event is detected, reverse. Stay reversed until either |
| // unstuck, or 0.5 seconds have elapsed. |
| // Then, start going forwards. Don't detect stuck for 0.5 seconds. |
| |
| monotonic_clock::time_point monotonic_now = monotonic_clock::now(); |
| switch (indexer_state_) { |
| case IndexerState::RUNNING: |
| // The velocity goal is already set above in this case, so leave it |
| // alone. |
| |
| // If we are stuck and weren't just reversing, try reversing to unstick |
| // us. We don't want to chatter back and forth too fast if reversing |
| // isn't working. |
| if (profiled_subsystem_.IsIndexerStuck() && |
| monotonic_now > kForwardTimeout + last_transition_time_) { |
| indexer_state_ = IndexerState::REVERSING; |
| last_transition_time_ = monotonic_now; |
| profiled_subsystem_.PartialIndexerReset(); |
| LOG(INFO, "Partial indexer reset while going forwards\n"); |
| LOG(INFO, "Indexer RUNNING -> REVERSING\n"); |
| } |
| break; |
| case IndexerState::REVERSING: |
| // "Reverse" "slowly". |
| profiled_subsystem_.set_indexer_unprofiled_goal( |
| -5.0 * ::aos::sign(profiled_subsystem_.unprofiled_goal(1, 0))); |
| |
| // If we've timed out or are no longer stuck, try running again. |
| if ((!profiled_subsystem_.IsIndexerStuck() && |
| monotonic_now > last_transition_time_ + kReverseMinTimeout) || |
| monotonic_now > kReverseTimeout + last_transition_time_) { |
| indexer_state_ = IndexerState::RUNNING; |
| LOG(INFO, "Indexer REVERSING -> RUNNING, stuck %d\n", |
| profiled_subsystem_.IsIndexerStuck()); |
| |
| // Only reset if we got stuck going this way too. |
| if (monotonic_now > kReverseTimeout + last_transition_time_) { |
| LOG(INFO, "Partial indexer reset while reversing\n"); |
| profiled_subsystem_.PartialIndexerReset(); |
| } |
| last_transition_time_ = monotonic_now; |
| } |
| break; |
| } |
| |
| // Set the voltage limits. |
| const double max_voltage = |
| (state_ == State::RUNNING) ? kOperatingVoltage : kZeroingVoltage; |
| |
| profiled_subsystem_.set_max_voltage({{max_voltage, max_voltage}}); |
| |
| // Calculate the loops for a cycle. |
| profiled_subsystem_.Update(disable); |
| |
| // Write out all the voltages. |
| if (indexer_output) { |
| *indexer_output = profiled_subsystem_.indexer_voltage(); |
| } |
| if (turret_output) { |
| *turret_output = profiled_subsystem_.turret_voltage(); |
| } |
| |
| // Save debug/internal state. |
| // TODO(austin): Save more. |
| turret_status->zeroed = profiled_subsystem_.zeroed(); |
| profiled_subsystem_.PopulateTurretStatus(turret_status); |
| turret_status->estopped = (state_ == State::ESTOP); |
| turret_status->state = static_cast<int32_t>(state_); |
| turret_status->turret_encoder_angle = profiled_subsystem_.turret_position(); |
| if (vision_time_adjuster_.valid()) { |
| turret_status->vision_angle = vision_time_adjuster_.goal(); |
| turret_status->raw_vision_angle = |
| vision_time_adjuster_.most_recent_vision_reading(); |
| turret_status->vision_tracking = true; |
| } else { |
| turret_status->vision_angle = ::std::numeric_limits<double>::quiet_NaN(); |
| turret_status->vision_tracking = false; |
| } |
| |
| profiled_subsystem_.PopulateIndexerStatus(indexer_status); |
| indexer_status->state = static_cast<int32_t>(indexer_state_); |
| } |
| |
| } // namespace column |
| } // namespace superstructure |
| } // namespace control_loops |
| } // namespace y2017 |