blob: 5c5793b641fdbd78c71288bdc499ea8f96bbeaf7 [file] [log] [blame]
#!/usr/bin/python
import numpy
import sys
import operator
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import controls
from y2016.control_loops.python.shoulder import Shoulder, IntegralShoulder
from y2016.control_loops.python.wrist import Wrist, IntegralWrist
from aos.util.trapezoid_profile import TrapezoidProfile
from matplotlib import pylab
import gflags
import glog
FLAGS = gflags.FLAGS
try:
gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
except gflags.DuplicateFlagError:
pass
class Arm(control_loop.ControlLoop):
def __init__(self, name="Arm", J=None):
super(Arm, self).__init__(name=name)
self._shoulder = Shoulder(name=name, J=J)
self._shooter = Wrist(name=name)
self.shoulder_Kv = self._shoulder.Kv / self._shoulder.G
# Do a coordinate transformation.
# X_shooter_grounded = X_shooter + X_shoulder
# dX_shooter_grounded/dt = A_shooter * X_shooter + A_shoulder * X_shoulder +
# B_shoulder * U_shoulder + B_shooter * U_shooter
# dX_shooter_grounded/dt = A_shooter * (X_shooter_grounded - X_shoulder) +
# A_shoulder * X_shoulder + B_shooter * U_shooter + B_shoulder * U_shoulder
# X = [X_shoulder; X_shooter + X_shoulder]
# dX/dt = [A_shoulder 0] [X_shoulder ] + [B_shoulder 0] [U_shoulder]
# [(A_shoulder - A_shooter) A_shooter] [X_shooter_grounded] + [B_shoulder B_shooter] [ U_shooter]
# Y_shooter_grounded = Y_shooter + Y_shoulder
self.A_continuous = numpy.matrix(numpy.zeros((4, 4)))
self.A_continuous[0:2, 0:2] = self._shoulder.A_continuous
self.A_continuous[2:4, 0:2] = (self._shoulder.A_continuous -
self._shooter.A_continuous)
self.A_continuous[2:4, 2:4] = self._shooter.A_continuous
self.B_continuous = numpy.matrix(numpy.zeros((4, 2)))
self.B_continuous[0:2, 0:1] = self._shoulder.B_continuous
self.B_continuous[2:4, 1:2] = self._shooter.B_continuous
self.B_continuous[2:4, 0:1] = self._shoulder.B_continuous
self.C = numpy.matrix(numpy.zeros((2, 4)))
self.C[0:1, 0:2] = self._shoulder.C
self.C[1:2, 0:2] = -self._shoulder.C
self.C[1:2, 2:4] = self._shooter.C
# D is 0 for all our loops.
self.D = numpy.matrix(numpy.zeros((2, 2)))
self.dt = 0.005
self.A, self.B = self.ContinuousToDiscrete(
self.A_continuous, self.B_continuous, self.dt)
# Cost of error
self.Q = numpy.matrix(numpy.zeros((4, 4)))
q_pos_shoulder = 0.014
q_vel_shoulder = 4.00
q_pos_shooter = 0.014
q_vel_shooter = 4.00
self.Q[0, 0] = 1.0 / q_pos_shoulder ** 2.0
self.Q[1, 1] = 1.0 / q_vel_shoulder ** 2.0
self.Q[2, 2] = 1.0 / q_pos_shooter ** 2.0
self.Q[3, 3] = 1.0 / q_vel_shooter ** 2.0
self.Qff = numpy.matrix(numpy.zeros((4, 4)))
qff_pos_shoulder = 0.005
qff_vel_shoulder = 1.00
qff_pos_shooter = 0.005
qff_vel_shooter = 1.00
self.Qff[0, 0] = 1.0 / qff_pos_shoulder ** 2.0
self.Qff[1, 1] = 1.0 / qff_vel_shoulder ** 2.0
self.Qff[2, 2] = 1.0 / qff_pos_shooter ** 2.0
self.Qff[3, 3] = 1.0 / qff_vel_shooter ** 2.0
# Cost of control effort
self.R = numpy.matrix(numpy.zeros((2, 2)))
r_voltage = 1.0 / 12.0
self.R[0, 0] = r_voltage ** 2.0
self.R[1, 1] = r_voltage ** 2.0
self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff)
glog.debug('Shoulder K')
glog.debug(repr(self._shoulder.K))
glog.debug('Poles are %s',
repr(numpy.linalg.eig(self._shoulder.A -
self._shoulder.B * self._shoulder.K)[0]))
# Compute controller gains.
# self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
self.K = numpy.matrix(numpy.zeros((2, 4)))
self.K[0:1, 0:2] = self._shoulder.K
self.K[1:2, 0:2] = (
-self.Kff[1:2, 2:4] * self.B[2:4, 0:1] * self._shoulder.K
+ self.Kff[1:2, 2:4] * self.A[2:4, 0:2])
self.K[1:2, 2:4] = self._shooter.K
glog.debug('Arm controller %s', repr(self.K))
# Cost of error
self.Q = numpy.matrix(numpy.zeros((4, 4)))
q_pos_shoulder = 0.05
q_vel_shoulder = 2.65
q_pos_shooter = 0.05
q_vel_shooter = 2.65
self.Q[0, 0] = q_pos_shoulder ** 2.0
self.Q[1, 1] = q_vel_shoulder ** 2.0
self.Q[2, 2] = q_pos_shooter ** 2.0
self.Q[3, 3] = q_vel_shooter ** 2.0
# Cost of control effort
self.R = numpy.matrix(numpy.zeros((2, 2)))
r_voltage = 0.025
self.R[0, 0] = r_voltage ** 2.0
self.R[1, 1] = r_voltage ** 2.0
self.KalmanGain, self.Q_steady = controls.kalman(
A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
self.L = self.A * self.KalmanGain
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
self.InitializeState()
class IntegralArm(Arm):
def __init__(self, name="IntegralArm", J=None):
super(IntegralArm, self).__init__(name=name, J=J)
self.A_continuous_unaugmented = self.A_continuous
self.B_continuous_unaugmented = self.B_continuous
self.A_continuous = numpy.matrix(numpy.zeros((6, 6)))
self.A_continuous[0:4, 0:4] = self.A_continuous_unaugmented
self.A_continuous[0:4, 4:6] = self.B_continuous_unaugmented
self.B_continuous = numpy.matrix(numpy.zeros((6, 2)))
self.B_continuous[0:4, 0:2] = self.B_continuous_unaugmented
self.C_unaugmented = self.C
self.C = numpy.matrix(numpy.zeros((2, 6)))
self.C[0:2, 0:4] = self.C_unaugmented
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt)
q_pos_shoulder = 0.10
q_vel_shoulder = 0.005
q_voltage_shoulder = 3.5
q_pos_shooter = 0.08
q_vel_shooter = 2.00
q_voltage_shooter = 1.0
self.Q = numpy.matrix(numpy.zeros((6, 6)))
self.Q[0, 0] = q_pos_shoulder ** 2.0
self.Q[1, 1] = q_vel_shoulder ** 2.0
self.Q[2, 2] = q_pos_shooter ** 2.0
self.Q[3, 3] = q_vel_shooter ** 2.0
self.Q[4, 4] = q_voltage_shoulder ** 2.0
self.Q[5, 5] = q_voltage_shooter ** 2.0
self.R = numpy.matrix(numpy.zeros((2, 2)))
r_pos = 0.05
self.R[0, 0] = r_pos ** 2.0
self.R[1, 1] = r_pos ** 2.0
self.KalmanGain, self.Q_steady = controls.kalman(
A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
self.L = self.A * self.KalmanGain
self.K_unaugmented = self.K
self.K = numpy.matrix(numpy.zeros((2, 6)))
self.K[0:2, 0:4] = self.K_unaugmented
self.K[0, 4] = 1
self.K[1, 5] = 1
self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((2, 2)))), axis=1)
self.InitializeState()
class ScenarioPlotter(object):
def __init__(self):
# Various lists for graphing things.
self.t = []
self.x_shoulder = []
self.v_shoulder = []
self.a_shoulder = []
self.x_hat_shoulder = []
self.u_shoulder = []
self.offset_shoulder = []
self.x_shooter = []
self.v_shooter = []
self.a_shooter = []
self.x_hat_shooter = []
self.u_shooter = []
self.offset_shooter = []
self.goal_x_shoulder = []
self.goal_v_shoulder = []
self.goal_x_shooter = []
self.goal_v_shooter = []
def run_test(self, arm, end_goal,
iterations=200, controller=None, observer=None):
"""Runs the plant with an initial condition and goal.
Args:
arm: Arm object to use.
end_goal: numpy.Matrix[6, 1], end goal state.
iterations: Number of timesteps to run the model for.
controller: Arm object to get K from, or None if we should
use arm.
observer: Arm object to use for the observer, or None if we should
use the actual state.
"""
if controller is None:
controller = arm
vbat = 12.0
if self.t:
initial_t = self.t[-1] + arm.dt
else:
initial_t = 0
goal = numpy.concatenate((arm.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0)
shoulder_profile = TrapezoidProfile(arm.dt)
shoulder_profile.set_maximum_acceleration(12.0)
shoulder_profile.set_maximum_velocity(10.0)
shoulder_profile.SetGoal(goal[0, 0])
shooter_profile = TrapezoidProfile(arm.dt)
shooter_profile.set_maximum_acceleration(50.0)
shooter_profile.set_maximum_velocity(10.0)
shooter_profile.SetGoal(goal[2, 0])
U_last = numpy.matrix(numpy.zeros((2, 1)))
for i in xrange(iterations):
X_hat = arm.X
if observer is not None:
observer.Y = arm.Y
observer.CorrectObserver(U_last)
self.offset_shoulder.append(observer.X_hat[4, 0])
self.offset_shooter.append(observer.X_hat[5, 0])
X_hat = observer.X_hat
self.x_hat_shoulder.append(observer.X_hat[0, 0])
self.x_hat_shooter.append(observer.X_hat[2, 0])
next_shoulder_goal = shoulder_profile.Update(end_goal[0, 0], end_goal[1, 0])
next_shooter_goal = shooter_profile.Update(end_goal[2, 0], end_goal[3, 0])
next_goal = numpy.concatenate(
(next_shoulder_goal,
next_shooter_goal,
numpy.matrix(numpy.zeros((2, 1)))),
axis=0)
self.goal_x_shoulder.append(goal[0, 0])
self.goal_v_shoulder.append(goal[1, 0])
self.goal_x_shooter.append(goal[2, 0])
self.goal_v_shooter.append(goal[3, 0])
ff_U = controller.Kff * (next_goal - observer.A * goal)
U_uncapped = controller.K * (goal - X_hat) + ff_U
U = U_uncapped.copy()
U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat)
self.x_shoulder.append(arm.X[0, 0])
self.x_shooter.append(arm.X[2, 0])
if self.v_shoulder:
last_v_shoulder = self.v_shoulder[-1]
else:
last_v_shoulder = 0
self.v_shoulder.append(arm.X[1, 0])
self.a_shoulder.append(
(self.v_shoulder[-1] - last_v_shoulder) / arm.dt)
if self.v_shooter:
last_v_shooter = self.v_shooter[-1]
else:
last_v_shooter = 0
self.v_shooter.append(arm.X[3, 0])
self.a_shooter.append(
(self.v_shooter[-1] - last_v_shooter) / arm.dt)
if i % 40 == 0:
# Test that if we move the shoulder, the shooter stays perfect.
#observer.X_hat[0, 0] += 0.20
#arm.X[0, 0] += 0.20
pass
U_error = numpy.matrix([[2.0], [2.0]])
# Kick it and see what happens.
#if (initial_t + i * arm.dt) % 0.4 > 0.2:
#U_error = numpy.matrix([[4.0], [0.0]])
#else:
#U_error = numpy.matrix([[-4.0], [0.0]])
arm.Update(U + U_error)
if observer is not None:
observer.PredictObserver(U)
self.t.append(initial_t + i * arm.dt)
self.u_shoulder.append(U[0, 0])
self.u_shooter.append(U[1, 0])
ff_U -= U_uncapped - U
goal = controller.A * goal + controller.B * ff_U
if U[0, 0] != U_uncapped[0, 0]:
glog.debug('Moving shoulder %s', repr(initial_t + i * arm.dt))
glog.debug('U error %s', repr(U_uncapped - U))
glog.debug('goal change is %s',
repr(next_shoulder_goal -
numpy.matrix([[goal[0, 0]], [goal[1, 0]]])))
shoulder_profile.MoveCurrentState(
numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))
if U[1, 0] != U_uncapped[1, 0]:
glog.debug('Moving shooter %s', repr(initial_t + i * arm.dt))
glog.debug('U error %s', repr(U_uncapped - U))
shooter_profile.MoveCurrentState(
numpy.matrix([[goal[2, 0]], [goal[3, 0]]]))
U_last = U
glog.debug('goal_error %s', repr(end_goal - goal))
glog.debug('error %s', repr(observer.X_hat - end_goal))
def Plot(self):
pylab.subplot(3, 1, 1)
pylab.plot(self.t, self.x_shoulder, label='x shoulder')
pylab.plot(self.t, self.goal_x_shoulder, label='goal x shoulder')
pylab.plot(self.t, self.x_hat_shoulder, label='x_hat shoulder')
pylab.plot(self.t, self.x_shooter, label='x shooter')
pylab.plot(self.t, self.x_hat_shooter, label='x_hat shooter')
pylab.plot(self.t, self.goal_x_shooter, label='goal x shooter')
pylab.plot(self.t, map(operator.add, self.x_shooter, self.x_shoulder),
label='x shooter ground')
pylab.plot(self.t, map(operator.add, self.x_hat_shooter, self.x_hat_shoulder),
label='x_hat shooter ground')
pylab.legend()
pylab.subplot(3, 1, 2)
pylab.plot(self.t, self.u_shoulder, label='u shoulder')
pylab.plot(self.t, self.offset_shoulder, label='voltage_offset shoulder')
pylab.plot(self.t, self.u_shooter, label='u shooter')
pylab.plot(self.t, self.offset_shooter, label='voltage_offset shooter')
pylab.legend()
pylab.subplot(3, 1, 3)
pylab.plot(self.t, self.a_shoulder, label='a_shoulder')
pylab.plot(self.t, self.a_shooter, label='a_shooter')
pylab.legend()
pylab.show()
def main(argv):
argv = FLAGS(argv)
glog.init()
scenario_plotter = ScenarioPlotter()
J_accelerating = 18
J_decelerating = 7
arm = Arm(name='AcceleratingArm', J=J_accelerating)
arm_integral_controller = IntegralArm(
name='AcceleratingIntegralArm', J=J_accelerating)
arm_observer = IntegralArm()
# Test moving the shoulder with constant separation.
initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0]])
R = numpy.matrix([[numpy.pi / 2.0],
[0.0],
[0.0], #[numpy.pi / 2.0],
[0.0],
[0.0],
[0.0]])
arm.X = initial_X[0:4, 0]
arm_observer.X = initial_X
scenario_plotter.run_test(arm=arm,
end_goal=R,
iterations=300,
controller=arm_integral_controller,
observer=arm_observer)
if len(argv) != 5:
glog.fatal('Expected .h file name and .cc file name for the wrist and integral wrist.')
else:
namespaces = ['y2016', 'control_loops', 'superstructure']
decelerating_arm = Arm(name='DeceleratingArm', J=J_decelerating)
loop_writer = control_loop.ControlLoopWriter(
'Arm', [arm, decelerating_arm], namespaces=namespaces)
loop_writer.Write(argv[1], argv[2])
decelerating_integral_arm_controller = IntegralArm(
name='DeceleratingIntegralArm', J=J_decelerating)
integral_loop_writer = control_loop.ControlLoopWriter(
'IntegralArm',
[arm_integral_controller, decelerating_integral_arm_controller],
namespaces=namespaces)
integral_loop_writer.AddConstant(control_loop.Constant("kV_shoulder", "%f",
arm_integral_controller.shoulder_Kv))
integral_loop_writer.Write(argv[3], argv[4])
if FLAGS.plot:
scenario_plotter.Plot()
if __name__ == '__main__':
sys.exit(main(sys.argv))