Create y2024 localizer
This is primarily a copy of the y2023 localizer, with updates to
better characterize the noise of the april tag readings (by separating
out heading/distance/skew measurements).
It also listens to the drivetrain Position message for encoder readings
rather than relying on the IMU board to send them.
This adds a few things:
* The main localizer libraries and processes themselves.
* Updates to the AOS configs to pull in the appropriate localization
channels.
* Creates the typescript plots for localization debugging.
* Creates some dummy camera extrinsics for use in the tests.
Change-Id: I58d5c1da0d3dc2dad98bd2a9fc10965db51c4f84
Signed-off-by: James Kuszmaul <jabukuszmaul+collab@gmail.com>
diff --git a/y2024/localizer/localizer.cc b/y2024/localizer/localizer.cc
new file mode 100644
index 0000000..30bb108
--- /dev/null
+++ b/y2024/localizer/localizer.cc
@@ -0,0 +1,605 @@
+#include "y2024/localizer/localizer.h"
+
+#include "gflags/gflags.h"
+
+#include "aos/containers/sized_array.h"
+#include "frc971/control_loops/drivetrain/localizer_generated.h"
+#include "frc971/control_loops/pose.h"
+#include "frc971/vision/target_map_utils.h"
+#include "y2024/constants.h"
+
+DEFINE_double(max_pose_error, 1e-6,
+ "Throw out target poses with a higher pose error than this");
+DEFINE_double(
+ max_pose_error_ratio, 0.4,
+ "Throw out target poses with a higher pose error ratio than this");
+DEFINE_double(distortion_noise_scalar, 1.0,
+ "Scale the target pose distortion factor by this when computing "
+ "the noise.");
+DEFINE_double(
+ max_implied_yaw_error, 3.0,
+ "Reject target poses that imply a robot yaw of more than this many degrees "
+ "off from our estimate.");
+DEFINE_double(
+ max_implied_teleop_yaw_error, 30.0,
+ "Reject target poses that imply a robot yaw of more than this many degrees "
+ "off from our estimate.");
+DEFINE_double(max_distance_to_target, 5.0,
+ "Reject target poses that have a 3d distance of more than this "
+ "many meters.");
+DEFINE_double(max_auto_image_robot_speed, 2.0,
+ "Reject target poses when the robot is travelling faster than "
+ "this speed in auto.");
+
+namespace y2024::localizer {
+namespace {
+constexpr std::array<std::string_view, Localizer::kNumCameras>
+ kDetectionChannels{"/orin1/camera0", "/orin1/camera1", "/orin2/camera0",
+ "/orin2/camera1"};
+
+size_t CameraIndexForName(std::string_view name) {
+ for (size_t index = 0; index < kDetectionChannels.size(); ++index) {
+ if (name == kDetectionChannels.at(index)) {
+ return index;
+ }
+ }
+ LOG(FATAL) << "No camera channel named " << name;
+}
+
+std::map<uint64_t, Localizer::Transform> GetTargetLocations(
+ const Constants &constants) {
+ CHECK(constants.has_common());
+ CHECK(constants.common()->has_target_map());
+ CHECK(constants.common()->target_map()->has_target_poses());
+ std::map<uint64_t, Localizer::Transform> transforms;
+ for (const frc971::vision::TargetPoseFbs *target :
+ *constants.common()->target_map()->target_poses()) {
+ CHECK(target->has_id());
+ CHECK(target->has_position());
+ CHECK(target->has_orientation());
+ CHECK_EQ(0u, transforms.count(target->id()));
+ transforms[target->id()] = PoseToTransform(target);
+ }
+ return transforms;
+}
+} // namespace
+
+std::array<Localizer::CameraState, Localizer::kNumCameras>
+Localizer::MakeCameras(const Constants &constants, aos::EventLoop *event_loop) {
+ CHECK(constants.has_cameras());
+ std::array<Localizer::CameraState, Localizer::kNumCameras> cameras;
+ for (const CameraConfiguration *camera : *constants.cameras()) {
+ CHECK(camera->has_calibration());
+ const frc971::vision::calibration::CameraCalibration *calibration =
+ camera->calibration();
+ CHECK(!calibration->has_turret_extrinsics())
+ << "The 2024 robot does not have cameras on a turret.";
+ CHECK(calibration->has_node_name());
+ const std::string channel_name =
+ absl::StrFormat("/%s/camera%d", calibration->node_name()->string_view(),
+ calibration->camera_number());
+ const size_t index = CameraIndexForName(channel_name);
+ // We default-construct the extrinsics matrix to all-zeros; use that to
+ // sanity-check whether we have populated the matrix yet or not.
+ CHECK(cameras.at(index).extrinsics.norm() == 0)
+ << "Got multiple calibrations for "
+ << calibration->node_name()->string_view();
+ CHECK(calibration->has_fixed_extrinsics());
+ cameras.at(index).extrinsics =
+ frc971::control_loops::drivetrain::FlatbufferToTransformationMatrix(
+ *calibration->fixed_extrinsics());
+ cameras.at(index).debug_sender =
+ event_loop->MakeSender<VisualizationStatic>(channel_name);
+ }
+ for (const CameraState &camera : cameras) {
+ CHECK(camera.extrinsics.norm() != 0) << "Missing a camera calibration.";
+ }
+ return cameras;
+}
+
+Localizer::Localizer(aos::EventLoop *event_loop)
+ : event_loop_(event_loop),
+ constants_fetcher_(event_loop),
+ dt_config_(
+ frc971::control_loops::drivetrain::DrivetrainConfig<double>::
+ FromFlatbuffer(*CHECK_NOTNULL(
+ constants_fetcher_.constants().common()->drivetrain()))),
+ cameras_(MakeCameras(constants_fetcher_.constants(), event_loop)),
+ target_poses_(GetTargetLocations(constants_fetcher_.constants())),
+ down_estimator_(dt_config_),
+ ekf_(dt_config_),
+ observations_(&ekf_),
+ imu_watcher_(event_loop, dt_config_,
+ y2024::constants::Values::DrivetrainEncoderToMeters(1),
+ std::bind(&Localizer::HandleImu, this, std::placeholders::_1,
+ std::placeholders::_2, std::placeholders::_3,
+ std::placeholders::_4, std::placeholders::_5),
+ frc971::controls::ImuWatcher::TimestampSource::kPi),
+ utils_(event_loop),
+ status_sender_(event_loop->MakeSender<Status>("/localizer")),
+ output_sender_(event_loop->MakeSender<frc971::controls::LocalizerOutput>(
+ "/localizer")),
+ server_statistics_fetcher_(
+ event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
+ "/aos")),
+ client_statistics_fetcher_(
+ event_loop_->MakeFetcher<aos::message_bridge::ClientStatistics>(
+ "/aos")) {
+ if (dt_config_.is_simulated) {
+ down_estimator_.assume_perfect_gravity();
+ }
+
+ for (size_t camera_index = 0; camera_index < kNumCameras; ++camera_index) {
+ const std::string_view channel_name = kDetectionChannels.at(camera_index);
+ const aos::Channel *const channel = CHECK_NOTNULL(
+ event_loop->GetChannel<frc971::vision::TargetMap>(channel_name));
+ event_loop->MakeWatcher(
+ channel_name, [this, channel,
+ camera_index](const frc971::vision::TargetMap &targets) {
+ CHECK(targets.has_target_poses());
+ CHECK(targets.has_monotonic_timestamp_ns());
+ const std::optional<aos::monotonic_clock::duration> clock_offset =
+ utils_.ClockOffset(channel->source_node()->string_view());
+ if (!clock_offset.has_value()) {
+ VLOG(1) << "Rejecting image due to disconnected message bridge at "
+ << event_loop_->monotonic_now();
+ cameras_.at(camera_index)
+ .rejection_counter.IncrementError(
+ RejectionReason::MESSAGE_BRIDGE_DISCONNECTED);
+ return;
+ }
+ const aos::monotonic_clock::time_point orin_capture_time(
+ std::chrono::nanoseconds(targets.monotonic_timestamp_ns()) -
+ clock_offset.value());
+ if (orin_capture_time > event_loop_->context().monotonic_event_time) {
+ VLOG(1) << "Rejecting image due to being from future at "
+ << event_loop_->monotonic_now() << " with timestamp of "
+ << orin_capture_time << " and event time pf "
+ << event_loop_->context().monotonic_event_time;
+ cameras_.at(camera_index)
+ .rejection_counter.IncrementError(
+ RejectionReason::IMAGE_FROM_FUTURE);
+ return;
+ }
+ auto debug_builder =
+ cameras_.at(camera_index).debug_sender.MakeStaticBuilder();
+ auto target_debug_list = debug_builder->add_targets();
+ // The static_length should already be 20.
+ CHECK(target_debug_list->reserve(20));
+ for (const frc971::vision::TargetPoseFbs *target :
+ *targets.target_poses()) {
+ VLOG(1) << "Handling target from " << camera_index;
+ HandleTarget(camera_index, orin_capture_time, *target,
+ target_debug_list->emplace_back());
+ }
+ StatisticsForCamera(cameras_.at(camera_index),
+ debug_builder->add_statistics());
+ debug_builder.CheckOk(debug_builder.Send());
+ SendStatus();
+ });
+ }
+
+ event_loop_->AddPhasedLoop([this](int) { SendOutput(); },
+ std::chrono::milliseconds(20));
+
+ event_loop_->MakeWatcher(
+ "/drivetrain",
+ [this](
+ const frc971::control_loops::drivetrain::LocalizerControl &control) {
+ // This is triggered whenever we need to force the X/Y/(maybe theta)
+ // position of the robot to a particular point---e.g., during pre-match
+ // setup, or when commanded by a button on the driverstation.
+
+ // For some forms of reset, we choose to keep our current yaw estimate
+ // rather than overriding it from the control message.
+ const double theta = control.keep_current_theta()
+ ? ekf_.X_hat(StateIdx::kTheta)
+ : control.theta();
+ // Ecnoder values need to be reset based on the current values to ensure
+ // that we don't get weird corrections on the next encoder update.
+ const double left_encoder = ekf_.X_hat(StateIdx::kLeftEncoder);
+ const double right_encoder = ekf_.X_hat(StateIdx::kRightEncoder);
+ ekf_.ResetInitialState(
+ t_,
+ (HybridEkf::State() << control.x(), control.y(), theta,
+ left_encoder, 0, right_encoder, 0, 0, 0, 0, 0, 0)
+ .finished(),
+ ekf_.P());
+ });
+
+ ekf_.set_ignore_accel(true);
+ // Priority should be lower than the imu reading process, but non-zero.
+ event_loop->SetRuntimeRealtimePriority(10);
+ event_loop->OnRun([this, event_loop]() {
+ ekf_.ResetInitialState(event_loop->monotonic_now(),
+ HybridEkf::State::Zero(), ekf_.P());
+ });
+}
+
+void Localizer::HandleImu(aos::monotonic_clock::time_point /*sample_time_pico*/,
+ aos::monotonic_clock::time_point sample_time_orin,
+ std::optional<Eigen::Vector2d> /*encoders*/,
+ Eigen::Vector3d gyro, Eigen::Vector3d accel) {
+ std::optional<Eigen::Vector2d> encoders = utils_.Encoders(sample_time_orin);
+ last_encoder_readings_ = encoders;
+ // Ignore invalid readings; the HybridEkf will handle it reasonably.
+ if (!encoders.has_value()) {
+ return;
+ }
+ if (t_ == aos::monotonic_clock::min_time) {
+ t_ = sample_time_orin;
+ }
+ if (t_ + 10 * frc971::controls::ImuWatcher::kNominalDt < sample_time_orin) {
+ t_ = sample_time_orin;
+ ++clock_resets_;
+ }
+ const aos::monotonic_clock::duration dt = sample_time_orin - t_;
+ t_ = sample_time_orin;
+ // We don't actually use the down estimator currently, but it's really
+ // convenient for debugging.
+ down_estimator_.Predict(gyro, accel, dt);
+ const double yaw_rate = (dt_config_.imu_transform * gyro)(2);
+ ekf_.UpdateEncodersAndGyro(encoders.value()(0), encoders.value()(1), yaw_rate,
+ utils_.VoltageOrZero(sample_time_orin), accel, t_);
+ SendStatus();
+}
+
+void Localizer::RejectImage(int camera_index, RejectionReason reason,
+ TargetEstimateDebugStatic *builder) {
+ if (builder != nullptr) {
+ builder->set_accepted(false);
+ builder->set_rejection_reason(reason);
+ }
+ cameras_.at(camera_index).rejection_counter.IncrementError(reason);
+}
+
+// Only use april tags present in the target map; this method has also been used
+// (in the past) for ignoring april tags that tend to produce problematic
+// readings.
+bool Localizer::UseAprilTag(uint64_t target_id) {
+ return target_poses_.count(target_id) != 0;
+}
+
+namespace {
+// Converts a camera transformation matrix from treating the +Z axis from
+// pointing straight out the lens to having the +X pointing straight out the
+// lens, with +Z going "up" (i.e., -Y in the normal convention) and +Y going
+// leftwards (i.e., -X in the normal convention).
+Localizer::Transform ZToXCamera(const Localizer::Transform &transform) {
+ return transform *
+ Eigen::Matrix4d{
+ {0, -1, 0, 0}, {0, 0, -1, 0}, {1, 0, 0, 0}, {0, 0, 0, 1}};
+}
+} // namespace
+
+void Localizer::HandleTarget(
+ int camera_index, const aos::monotonic_clock::time_point capture_time,
+ const frc971::vision::TargetPoseFbs &target,
+ TargetEstimateDebugStatic *debug_builder) {
+ ++total_candidate_targets_;
+ ++cameras_.at(camera_index).total_candidate_targets;
+ const uint64_t target_id = target.id();
+
+ if (debug_builder == nullptr) {
+ AOS_LOG(ERROR, "Dropped message from debug vector.");
+ } else {
+ debug_builder->set_camera(camera_index);
+ debug_builder->set_image_age_sec(aos::time::DurationInSeconds(
+ event_loop_->monotonic_now() - capture_time));
+ debug_builder->set_image_monotonic_timestamp_ns(
+ std::chrono::duration_cast<std::chrono::nanoseconds>(
+ capture_time.time_since_epoch())
+ .count());
+ debug_builder->set_april_tag(target_id);
+ }
+ VLOG(2) << aos::FlatbufferToJson(&target);
+ if (!UseAprilTag(target_id)) {
+ VLOG(1) << "Rejecting target due to invalid ID " << target_id;
+ RejectImage(camera_index, RejectionReason::NO_SUCH_TARGET, debug_builder);
+ return;
+ }
+
+ const Transform &H_field_target = target_poses_.at(target_id);
+ const Transform &H_robot_camera = cameras_.at(camera_index).extrinsics;
+
+ const Transform H_camera_target = PoseToTransform(&target);
+
+ // In order to do the EKF correction, we determine the expected state based
+ // on the state at the time the image was captured; however, we insert the
+ // correction update itself at the current time. This is technically not
+ // quite correct, but saves substantial CPU usage & code complexity by
+ // making it so that we don't have to constantly rewind the entire EKF
+ // history.
+ const std::optional<State> state_at_capture =
+ ekf_.LastStateBeforeTime(capture_time);
+
+ if (!state_at_capture.has_value()) {
+ VLOG(1) << "Rejecting image due to being too old.";
+ return RejectImage(camera_index, RejectionReason::IMAGE_TOO_OLD,
+ debug_builder);
+ } else if (target.pose_error() > FLAGS_max_pose_error) {
+ VLOG(1) << "Rejecting target due to high pose error "
+ << target.pose_error();
+ return RejectImage(camera_index, RejectionReason::HIGH_POSE_ERROR,
+ debug_builder);
+ } else if (target.pose_error_ratio() > FLAGS_max_pose_error_ratio) {
+ VLOG(1) << "Rejecting target due to high pose error ratio "
+ << target.pose_error_ratio();
+ return RejectImage(camera_index, RejectionReason::HIGH_POSE_ERROR_RATIO,
+ debug_builder);
+ }
+
+ Corrector corrector(state_at_capture.value(), H_field_target, H_robot_camera,
+ H_camera_target);
+ const double distance_to_target = corrector.observed()(Corrector::kDistance);
+
+ // Heading, distance, skew at 1 meter.
+ Eigen::Matrix<double, 3, 1> noises(0.01, 0.05, 0.05);
+ const double distance_noise_scalar = std::pow(distance_to_target, 2.0);
+ noises(Corrector::kDistance) *= distance_noise_scalar;
+ noises(Corrector::kSkew) *= distance_noise_scalar;
+ // TODO(james): This is leftover from last year; figure out if we want it.
+ // Scale noise by the distortion factor for this detection
+ noises *= (1.0 + FLAGS_distortion_noise_scalar * target.distortion_factor());
+
+ Eigen::Matrix3d R = Eigen::Matrix3d::Zero();
+ R.diagonal() = noises.cwiseAbs2();
+ if (debug_builder != nullptr) {
+ const Eigen::Vector3d camera_position =
+ corrector.observed_camera_pose().abs_pos();
+ debug_builder->set_camera_x(camera_position.x());
+ debug_builder->set_camera_y(camera_position.y());
+ debug_builder->set_camera_theta(
+ corrector.observed_camera_pose().abs_theta());
+ // Calculate the camera-to-robot transformation matrix ignoring the
+ // pitch/roll of the camera.
+ const Transform H_camera_robot_stripped =
+ frc971::control_loops::Pose(ZToXCamera(H_robot_camera))
+ .AsTransformationMatrix()
+ .inverse();
+ const frc971::control_loops::Pose measured_pose(
+ corrector.observed_camera_pose().AsTransformationMatrix() *
+ H_camera_robot_stripped);
+ debug_builder->set_implied_robot_x(measured_pose.rel_pos().x());
+ debug_builder->set_implied_robot_y(measured_pose.rel_pos().y());
+ debug_builder->set_implied_robot_theta(measured_pose.rel_theta());
+
+ Corrector::PopulateMeasurement(corrector.expected(),
+ debug_builder->add_expected_observation());
+ Corrector::PopulateMeasurement(corrector.observed(),
+ debug_builder->add_actual_observation());
+ Corrector::PopulateMeasurement(noises, debug_builder->add_modeled_noise());
+ }
+
+ const double camera_yaw_error =
+ aos::math::NormalizeAngle(corrector.expected_camera_pose().abs_theta() -
+ corrector.observed_camera_pose().abs_theta());
+ constexpr double kDegToRad = M_PI / 180.0;
+
+ const double robot_speed =
+ (state_at_capture.value()(StateIdx::kLeftVelocity) +
+ state_at_capture.value()(StateIdx::kRightVelocity)) /
+ 2.0;
+ const double yaw_threshold =
+ (utils_.MaybeInAutonomous() ? FLAGS_max_implied_yaw_error
+ : FLAGS_max_implied_teleop_yaw_error) *
+ kDegToRad;
+
+ if (utils_.MaybeInAutonomous() &&
+ (std::abs(robot_speed) > FLAGS_max_auto_image_robot_speed)) {
+ return RejectImage(camera_index, RejectionReason::ROBOT_TOO_FAST,
+ debug_builder);
+ } else if (std::abs(camera_yaw_error) > yaw_threshold) {
+ return RejectImage(camera_index, RejectionReason::HIGH_IMPLIED_YAW_ERROR,
+ debug_builder);
+ } else if (distance_to_target > FLAGS_max_distance_to_target) {
+ return RejectImage(camera_index, RejectionReason::HIGH_DISTANCE_TO_TARGET,
+ debug_builder);
+ }
+
+ const Input U = ekf_.MostRecentInput();
+ VLOG(1) << "previous state " << ekf_.X_hat().topRows<3>().transpose();
+ const State prior_state = ekf_.X_hat();
+ // For the correction step, instead of passing in the measurement directly,
+ // we pass in (0, 0, 0) as the measurement and then for the expected
+ // measurement (Zhat) we calculate the error between the pose implied by
+ // the camera measurement and the current estimate of the
+ // pose. This doesn't affect any of the math, it just makes the code a bit
+ // more convenient to write given the Correct() interface we already have.
+ observations_.CorrectKnownH(
+ Eigen::Vector3d::Zero(), &U,
+ Corrector(state_at_capture.value(), H_field_target, H_robot_camera,
+ H_camera_target),
+ R, t_);
+ ++total_accepted_targets_;
+ ++cameras_.at(camera_index).total_accepted_targets;
+ VLOG(1) << "new state " << ekf_.X_hat().topRows<3>().transpose();
+ if (debug_builder != nullptr) {
+ debug_builder->set_correction_x(ekf_.X_hat()(StateIdx::kX) -
+ prior_state(StateIdx::kX));
+ debug_builder->set_correction_y(ekf_.X_hat()(StateIdx::kY) -
+ prior_state(StateIdx::kY));
+ debug_builder->set_correction_theta(ekf_.X_hat()(StateIdx::kTheta) -
+ prior_state(StateIdx::kTheta));
+ debug_builder->set_accepted(true);
+ }
+}
+
+void Localizer::SendOutput() {
+ auto builder = output_sender_.MakeBuilder();
+ frc971::controls::LocalizerOutput::Builder output_builder =
+ builder.MakeBuilder<frc971::controls::LocalizerOutput>();
+ output_builder.add_monotonic_timestamp_ns(
+ std::chrono::duration_cast<std::chrono::nanoseconds>(
+ event_loop_->context().monotonic_event_time.time_since_epoch())
+ .count());
+ output_builder.add_x(ekf_.X_hat(StateIdx::kX));
+ output_builder.add_y(ekf_.X_hat(StateIdx::kY));
+ output_builder.add_theta(ekf_.X_hat(StateIdx::kTheta));
+ output_builder.add_zeroed(imu_watcher_.zeroer().Zeroed());
+ output_builder.add_image_accepted_count(total_accepted_targets_);
+ const Eigen::Quaterniond &orientation =
+ Eigen::AngleAxis<double>(ekf_.X_hat(StateIdx::kTheta),
+ Eigen::Vector3d::UnitZ()) *
+ down_estimator_.X_hat();
+ frc971::controls::Quaternion quaternion;
+ quaternion.mutate_x(orientation.x());
+ quaternion.mutate_y(orientation.y());
+ quaternion.mutate_z(orientation.z());
+ quaternion.mutate_w(orientation.w());
+ output_builder.add_orientation(&quaternion);
+ server_statistics_fetcher_.Fetch();
+ client_statistics_fetcher_.Fetch();
+
+ bool orins_connected = true;
+
+ if (server_statistics_fetcher_.get()) {
+ for (const auto *orin_server_status :
+ *server_statistics_fetcher_->connections()) {
+ if (orin_server_status->state() ==
+ aos::message_bridge::State::DISCONNECTED) {
+ orins_connected = false;
+ }
+ }
+ }
+
+ if (client_statistics_fetcher_.get()) {
+ for (const auto *pi_client_status :
+ *client_statistics_fetcher_->connections()) {
+ if (pi_client_status->state() ==
+ aos::message_bridge::State::DISCONNECTED) {
+ orins_connected = false;
+ }
+ }
+ }
+
+ // The output message is year-agnostic, and retains "pi" naming for histrocial
+ // reasons.
+ output_builder.add_all_pis_connected(orins_connected);
+ builder.CheckOk(builder.Send(output_builder.Finish()));
+}
+
+flatbuffers::Offset<frc971::control_loops::drivetrain::LocalizerState>
+Localizer::PopulateState(const State &X_hat,
+ flatbuffers::FlatBufferBuilder *fbb) {
+ frc971::control_loops::drivetrain::LocalizerState::Builder builder(*fbb);
+ builder.add_x(X_hat(StateIdx::kX));
+ builder.add_y(X_hat(StateIdx::kY));
+ builder.add_theta(X_hat(StateIdx::kTheta));
+ builder.add_left_velocity(X_hat(StateIdx::kLeftVelocity));
+ builder.add_right_velocity(X_hat(StateIdx::kRightVelocity));
+ builder.add_left_encoder(X_hat(StateIdx::kLeftEncoder));
+ builder.add_right_encoder(X_hat(StateIdx::kRightEncoder));
+ builder.add_left_voltage_error(X_hat(StateIdx::kLeftVoltageError));
+ builder.add_right_voltage_error(X_hat(StateIdx::kRightVoltageError));
+ builder.add_angular_error(X_hat(StateIdx::kAngularError));
+ builder.add_longitudinal_velocity_offset(
+ X_hat(StateIdx::kLongitudinalVelocityOffset));
+ builder.add_lateral_velocity(X_hat(StateIdx::kLateralVelocity));
+ return builder.Finish();
+}
+
+flatbuffers::Offset<ImuStatus> Localizer::PopulateImu(
+ flatbuffers::FlatBufferBuilder *fbb) const {
+ const auto zeroer_offset = imu_watcher_.zeroer().PopulateStatus(fbb);
+ const auto failures_offset = imu_watcher_.PopulateImuFailures(fbb);
+ ImuStatus::Builder builder(*fbb);
+ builder.add_zeroed(imu_watcher_.zeroer().Zeroed());
+ builder.add_faulted_zero(imu_watcher_.zeroer().Faulted());
+ builder.add_zeroing(zeroer_offset);
+ if (imu_watcher_.pico_offset().has_value()) {
+ builder.add_board_offset_ns(imu_watcher_.pico_offset().value().count());
+ builder.add_board_offset_error_ns(imu_watcher_.pico_offset_error().count());
+ }
+ if (last_encoder_readings_.has_value()) {
+ builder.add_left_encoder(last_encoder_readings_.value()(0));
+ builder.add_right_encoder(last_encoder_readings_.value()(1));
+ }
+ builder.add_imu_failures(failures_offset);
+ return builder.Finish();
+}
+
+flatbuffers::Offset<CumulativeStatistics> Localizer::StatisticsForCamera(
+ const CameraState &camera, flatbuffers::FlatBufferBuilder *fbb) {
+ const auto counts_offset = camera.rejection_counter.PopulateCounts(fbb);
+ CumulativeStatistics::Builder stats_builder(*fbb);
+ stats_builder.add_total_accepted(camera.total_accepted_targets);
+ stats_builder.add_total_candidates(camera.total_candidate_targets);
+ stats_builder.add_rejection_reasons(counts_offset);
+ return stats_builder.Finish();
+}
+
+void Localizer::StatisticsForCamera(const CameraState &camera,
+ CumulativeStatisticsStatic *builder) {
+ camera.rejection_counter.PopulateCountsStaticFbs(
+ builder->add_rejection_reasons());
+ builder->set_total_accepted(camera.total_accepted_targets);
+ builder->set_total_candidates(camera.total_candidate_targets);
+}
+
+void Localizer::SendStatus() {
+ auto builder = status_sender_.MakeBuilder();
+ std::array<flatbuffers::Offset<CumulativeStatistics>, kNumCameras>
+ stats_offsets;
+ for (size_t ii = 0; ii < kNumCameras; ++ii) {
+ stats_offsets.at(ii) = StatisticsForCamera(cameras_.at(ii), builder.fbb());
+ }
+ auto stats_offset =
+ builder.fbb()->CreateVector(stats_offsets.data(), stats_offsets.size());
+ auto down_estimator_offset =
+ down_estimator_.PopulateStatus(builder.fbb(), t_);
+ auto imu_offset = PopulateImu(builder.fbb());
+ auto state_offset = PopulateState(ekf_.X_hat(), builder.fbb());
+ Status::Builder status_builder = builder.MakeBuilder<Status>();
+ status_builder.add_state(state_offset);
+ status_builder.add_down_estimator(down_estimator_offset);
+ status_builder.add_imu(imu_offset);
+ status_builder.add_statistics(stats_offset);
+ builder.CheckOk(builder.Send(status_builder.Finish()));
+}
+
+Eigen::Vector3d Localizer::Corrector::HeadingDistanceSkew(
+ const Pose &relative_pose) {
+ const double heading = relative_pose.heading();
+ const double distance = relative_pose.xy_norm();
+ const double skew =
+ ::aos::math::NormalizeAngle(relative_pose.rel_theta() - heading);
+ return {heading, distance, skew};
+}
+
+Localizer::Corrector Localizer::Corrector::CalculateHeadingDistanceSkewH(
+ const State &state_at_capture, const Transform &H_field_target,
+ const Transform &H_robot_camera, const Transform &H_camera_target) {
+ const Transform H_field_camera = H_field_target * H_camera_target.inverse();
+ const Pose expected_robot_pose(
+ {state_at_capture(StateIdx::kX), state_at_capture(StateIdx::kY), 0.0},
+ state_at_capture(StateIdx::kTheta));
+ // Observed position on the field, reduced to just the 2-D pose.
+ const Pose observed_camera(ZToXCamera(H_field_camera));
+ const Pose expected_camera(expected_robot_pose.AsTransformationMatrix() *
+ ZToXCamera(H_robot_camera));
+ const Pose nominal_target(ZToXCamera(H_field_target));
+ const Pose observed_target = nominal_target.Rebase(&observed_camera);
+ const Pose expected_target = nominal_target.Rebase(&expected_camera);
+ return Localizer::Corrector{
+ expected_robot_pose,
+ observed_camera,
+ expected_camera,
+ HeadingDistanceSkew(expected_target),
+ HeadingDistanceSkew(observed_target),
+ frc971::control_loops::drivetrain::HMatrixForCameraHeadingDistanceSkew(
+ nominal_target, observed_camera)};
+}
+
+Localizer::Corrector::Corrector(const State &state_at_capture,
+ const Transform &H_field_target,
+ const Transform &H_robot_camera,
+ const Transform &H_camera_target)
+ : Corrector(CalculateHeadingDistanceSkewH(
+ state_at_capture, H_field_target, H_robot_camera, H_camera_target)) {}
+
+Localizer::Output Localizer::Corrector::H(const State &, const Input &) {
+ return expected_ - observed_;
+}
+
+} // namespace y2024::localizer