| #include <stdio.h> |
| #include <string.h> |
| #include <thread> |
| #include <mutex> |
| #include <unistd.h> |
| #include <inttypes.h> |
| |
| #include "aos/prime/output/motor_output.h" |
| #include "aos/common/controls/output_check.q.h" |
| #include "aos/common/messages/robot_state.q.h" |
| #include "aos/common/controls/sensor_generation.q.h" |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/logging/queue_logging.h" |
| #include "aos/common/time.h" |
| #include "aos/common/util/log_interval.h" |
| #include "aos/common/util/phased_loop.h" |
| #include "aos/common/util/wrapping_counter.h" |
| #include "aos/linux_code/init.h" |
| |
| #include "frc971/control_loops/drivetrain/drivetrain.q.h" |
| #include "frc971/control_loops/claw/claw.q.h" |
| #include "frc971/control_loops/shooter/shooter.q.h" |
| #include "frc971/constants.h" |
| #include "frc971/queues/other_sensors.q.h" |
| #include "frc971/queues/to_log.q.h" |
| |
| #include "frc971/wpilib/hall_effect.h" |
| #include "frc971/wpilib/joystick_sender.h" |
| |
| #include "Encoder.h" |
| #include "Talon.h" |
| #include "DriverStation.h" |
| #include "AnalogInput.h" |
| #include "Solenoid.h" |
| #include "Compressor.h" |
| #include "RobotBase.h" |
| |
| #ifndef M_PI |
| #define M_PI 3.14159265358979323846 |
| #endif |
| |
| using ::aos::util::SimpleLogInterval; |
| using ::frc971::control_loops::drivetrain; |
| using ::frc971::sensors::other_sensors; |
| using ::frc971::sensors::gyro_reading; |
| using ::aos::util::WrappingCounter; |
| |
| namespace frc971 { |
| namespace wpilib { |
| |
| class priority_mutex { |
| public: |
| typedef pthread_mutex_t *native_handle_type; |
| |
| // TODO(austin): Write a test case for the mutex, and make the constructor |
| // constexpr. |
| priority_mutex() { |
| pthread_mutexattr_t attr; |
| #ifdef NDEBUG |
| #error "Won't let assert_perror be no-op ed" |
| #endif |
| // Turn on priority inheritance. |
| assert_perror(pthread_mutexattr_init(&attr)); |
| assert_perror(pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL)); |
| assert_perror(pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT)); |
| |
| assert_perror(pthread_mutex_init(native_handle(), &attr)); |
| |
| assert_perror(pthread_mutexattr_destroy(&attr)); |
| } |
| |
| ~priority_mutex() { pthread_mutex_destroy(&handle_); } |
| |
| void lock() { assert_perror(pthread_mutex_lock(&handle_)); } |
| bool try_lock() { |
| int ret = pthread_mutex_trylock(&handle_); |
| if (ret == 0) { |
| return true; |
| } else if (ret == EBUSY) { |
| return false; |
| } else { |
| assert_perror(ret); |
| } |
| } |
| void unlock() { assert_perror(pthread_mutex_unlock(&handle_)); } |
| |
| native_handle_type native_handle() { return &handle_; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(priority_mutex); |
| pthread_mutex_t handle_; |
| }; |
| |
| // TODO(brian): Split this out into a separate file once DMA is in. |
| class EdgeCounter { |
| public: |
| EdgeCounter(int priority, Encoder *encoder, HallEffect *input, |
| priority_mutex *mutex) |
| : priority_(priority), |
| encoder_(encoder), |
| input_(input), |
| mutex_(mutex), |
| run_(true), |
| any_interrupt_count_(0) { |
| thread_.reset(new ::std::thread(::std::ref(*this))); |
| } |
| |
| // Waits for interrupts, locks the mutex, and updates the internal state. |
| // Updates the any_interrupt_count count when the interrupt comes in without |
| // the lock. |
| void operator()() { |
| ::aos::SetCurrentThreadName("EdgeCounter_" + |
| ::std::to_string(input_->GetChannel())); |
| |
| input_->RequestInterrupts(); |
| input_->SetUpSourceEdge(true, true); |
| |
| { |
| ::std::unique_lock<priority_mutex> mutex_guard(*mutex_); |
| current_value_ = input_->GetHall(); |
| } |
| |
| ::aos::SetCurrentThreadRealtimePriority(priority_); |
| InterruptableSensorBase::WaitResult result = InterruptableSensorBase::kBoth; |
| while (run_) { |
| result = input_->WaitForInterrupt( |
| 0.1, result != InterruptableSensorBase::kTimeout); |
| if (result == InterruptableSensorBase::kTimeout) { |
| continue; |
| } |
| ++any_interrupt_count_; |
| |
| ::std::unique_lock<priority_mutex> mutex_guard(*mutex_); |
| int32_t encoder_value = encoder_->GetRaw(); |
| bool hall_value = input_->GetHall(); |
| if (current_value_ != hall_value) { |
| if (hall_value) { |
| ++positive_interrupt_count_; |
| last_positive_encoder_value_ = encoder_value; |
| } else { |
| ++negative_interrupt_count_; |
| last_negative_encoder_value_ = encoder_value; |
| } |
| } else { |
| LOG(WARNING, "Detected spurious edge on %d. Dropping it.\n", |
| input_->GetChannel()); |
| } |
| |
| current_value_ = hall_value; |
| } |
| } |
| |
| // Updates the internal hall effect value given this new observation. |
| // The mutex provided at construction time must be held during this operation. |
| void set_polled_value(bool value) { |
| polled_value_ = value; |
| bool miss_match = (value != current_value_); |
| if (miss_match && last_miss_match_) { |
| current_value_ = value; |
| last_miss_match_ = false; |
| } else { |
| last_miss_match_ = miss_match; |
| } |
| } |
| |
| // Signals the thread to quit next time it gets an interrupt. |
| void Quit() { |
| run_ = false; |
| thread_->join(); |
| } |
| |
| // Returns the total number of interrupts since construction time. This |
| // should be done without the mutex held. |
| int any_interrupt_count() const { return any_interrupt_count_; } |
| // Returns the current interrupt edge counts and encoder values. |
| // The mutex provided at construction time must be held during this operation. |
| int positive_interrupt_count() const { return positive_interrupt_count_; } |
| int negative_interrupt_count() const { return negative_interrupt_count_; } |
| int32_t last_positive_encoder_value() const { |
| return last_positive_encoder_value_; |
| } |
| int32_t last_negative_encoder_value() const { |
| return last_negative_encoder_value_; |
| } |
| // Returns the current polled value. |
| bool polled_value() const { return polled_value_; } |
| |
| private: |
| int priority_; |
| Encoder *encoder_; |
| HallEffect *input_; |
| priority_mutex *mutex_; |
| ::std::atomic<bool> run_; |
| |
| ::std::atomic<int> any_interrupt_count_; |
| |
| // The following variables represent the current state. They must be |
| // synchronized by mutex_; |
| bool current_value_ = false; |
| bool polled_value_ = false; |
| bool last_miss_match_ = true; |
| int positive_interrupt_count_ = 0; |
| int negative_interrupt_count_ = 0; |
| int32_t last_positive_encoder_value_ = 0; |
| int32_t last_negative_encoder_value_ = 0; |
| |
| ::std::unique_ptr<::std::thread> thread_; |
| }; |
| |
| // This class will synchronize sampling edges on a bunch of HallEffects with |
| // the periodic poll. |
| // |
| // The data is provided to subclasses by calling SaveState when the state is |
| // consistent and ready. |
| // |
| // TODO(brian): Split this out into a separate file once DMA is in. |
| template <int num_sensors> |
| class PeriodicHallSynchronizer { |
| public: |
| PeriodicHallSynchronizer( |
| const char *name, int priority, int interrupt_priority, |
| ::std::unique_ptr<Encoder> encoder, |
| ::std::array<::std::unique_ptr<HallEffect>, num_sensors> *sensors) |
| : name_(name), |
| priority_(priority), |
| encoder_(::std::move(encoder)), |
| run_(true) { |
| for (int i = 0; i < num_sensors; ++i) { |
| sensors_[i] = ::std::move((*sensors)[i]); |
| edge_counters_[i] = ::std::unique_ptr<EdgeCounter>(new EdgeCounter( |
| interrupt_priority, encoder_.get(), sensors_[i].get(), &mutex_)); |
| } |
| } |
| |
| const char *name() const { return name_.c_str(); } |
| |
| void StartThread() { thread_.reset(new ::std::thread(::std::ref(*this))); } |
| |
| // Called when the state is consistent and up to date. |
| virtual void SaveState() = 0; |
| |
| // Starts a sampling iteration. See RunIteration for usage. |
| void StartIteration() { |
| // Start by capturing the current interrupt counts. |
| for (int i = 0; i < num_sensors; ++i) { |
| interrupt_counts_[i] = edge_counters_[i]->any_interrupt_count(); |
| } |
| |
| { |
| // Now, update the encoder and sensor values. |
| ::std::unique_lock<priority_mutex> mutex_guard(mutex_); |
| encoder_value_ = encoder_->GetRaw(); |
| for (int i = 0; i < num_sensors; ++i) { |
| edge_counters_[i]->set_polled_value(sensors_[i]->GetHall()); |
| } |
| } |
| } |
| |
| // Attempts to finish a sampling iteration. See RunIteration for usage. |
| // Returns true if the iteration succeeded, and false otherwise. |
| bool TryFinishingIteration() { |
| // Make sure no interrupts have occurred while we were waiting. If they |
| // have, we are in an inconsistent state and need to try again. |
| ::std::unique_lock<priority_mutex> mutex_guard(mutex_); |
| bool retry = false; |
| for (int i = 0; i < num_sensors; ++i) { |
| retry = retry || (interrupt_counts_[i] != |
| edge_counters_[i]->any_interrupt_count()); |
| } |
| if (!retry) { |
| SaveState(); |
| return true; |
| } |
| LOG(WARNING, "Got an interrupt while sampling encoder %s, retrying\n", |
| name()); |
| return false; |
| } |
| |
| void RunIteration() { |
| while (true) { |
| StartIteration(); |
| |
| // Wait more than the amount of time it takes for a digital input change |
| // to go from visible to software to having triggered an interrupt. |
| ::aos::time::SleepFor(::aos::time::Time::InUS(120)); |
| |
| if (TryFinishingIteration()) { |
| return; |
| } |
| } |
| } |
| |
| void operator()() { |
| ::aos::SetCurrentThreadName("HallSync" + ::std::to_string(num_sensors)); |
| ::aos::SetCurrentThreadRealtimePriority(priority_); |
| while (run_) { |
| ::aos::time::PhasedLoopXMS(10, 9000); |
| RunIteration(); |
| } |
| } |
| |
| void Quit() { |
| run_ = false; |
| for (int i = 0; i < num_sensors; ++i) { |
| edge_counters_[i]->Quit(); |
| } |
| if (thread_) { |
| thread_->join(); |
| } |
| } |
| |
| protected: |
| // These values are only safe to fetch from inside SaveState() |
| int32_t encoder_value() const { return encoder_value_; } |
| ::std::array<::std::unique_ptr<EdgeCounter>, num_sensors> &edge_counters() { |
| return edge_counters_; |
| } |
| |
| private: |
| // A descriptive name for error messages. |
| ::std::string name_; |
| // The priority of the polling thread. |
| int priority_; |
| // The Encoder to sample. |
| ::std::unique_ptr<Encoder> encoder_; |
| // A list of all the digital inputs. |
| ::std::array<::std::unique_ptr<HallEffect>, num_sensors> sensors_; |
| // The mutex used to synchronize all the state. |
| priority_mutex mutex_; |
| ::std::atomic<bool> run_; |
| |
| // The state. |
| // The current encoder value. |
| int32_t encoder_value_ = 0; |
| // The current edge counters. |
| ::std::array<::std::unique_ptr<EdgeCounter>, num_sensors> edge_counters_; |
| |
| ::std::unique_ptr<::std::thread> thread_; |
| ::std::array<int, num_sensors> interrupt_counts_; |
| }; |
| |
| double drivetrain_translate(int32_t in) { |
| return static_cast<double>(in) / |
| (256.0 /*cpr*/ * 2.0 /*2x. Stupid WPILib*/) * |
| (18.0 / 50.0 /*output stage*/) * (56.0 / 30.0 /*encoder gears*/) |
| // * constants::GetValues().drivetrain_encoder_ratio |
| * |
| (3.5 /*wheel diameter*/ * 2.54 / 100.0 * M_PI); |
| } |
| |
| static const double kVcc = 5.15; |
| |
| double gyro_translate(int64_t in) { |
| return in / 16.0 / 1000.0 / (180.0 / M_PI); |
| } |
| |
| float hall_translate(const constants::ShifterHallEffect &k, float in_low, |
| float in_high) { |
| const float low_ratio = |
| 0.5 * (in_low - static_cast<float>(k.low_gear_low)) / |
| static_cast<float>(k.low_gear_middle - k.low_gear_low); |
| const float high_ratio = |
| 0.5 + 0.5 * (in_high - static_cast<float>(k.high_gear_middle)) / |
| static_cast<float>(k.high_gear_high - k.high_gear_middle); |
| |
| // Return low when we are below 1/2, and high when we are above 1/2. |
| if (low_ratio + high_ratio < 1.0) { |
| return low_ratio; |
| } else { |
| return high_ratio; |
| } |
| } |
| |
| double claw_translate(int32_t in) { |
| return static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*quad*/) / |
| (18.0 / 48.0 /*encoder gears*/) / (12.0 / 60.0 /*chain reduction*/) * |
| (M_PI / 180.0) * |
| 2.0 /*TODO(austin): Debug this, encoders read too little*/; |
| } |
| |
| double shooter_translate(int32_t in) { |
| return static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*quad*/) * |
| 16 /*sprocket teeth*/ * 0.375 /*chain pitch*/ |
| * (2.54 / 100.0 /*in to m*/); |
| } |
| |
| // This class sends out half of the claw position state at 100 hz. |
| class HalfClawHallSynchronizer : public PeriodicHallSynchronizer<3> { |
| public: |
| // Constructs a HalfClawHallSynchronizer. |
| // |
| // priority is the priority of the polling thread. |
| // interrupt_priority is the priority of the interrupt threads. |
| // encoder is the encoder to read. |
| // sensors is an array of hall effect sensors. The sensors[0] is the front |
| // sensor, sensors[1] is the calibration sensor, sensors[2] is the back |
| // sensor. |
| HalfClawHallSynchronizer( |
| const char *name, int priority, int interrupt_priority, |
| ::std::unique_ptr<Encoder> encoder, |
| ::std::array<::std::unique_ptr<HallEffect>, 3> *sensors, bool reversed) |
| : PeriodicHallSynchronizer<3>(name, priority, interrupt_priority, |
| ::std::move(encoder), sensors), |
| reversed_(reversed) {} |
| |
| void set_position(control_loops::HalfClawPosition *half_claw_position) { |
| half_claw_position_ = half_claw_position; |
| } |
| |
| // Saves the state so that it can be sent if it was synchronized. |
| virtual void SaveState() { |
| const auto &front = edge_counters()[0]; |
| half_claw_position_->front.current = front->polled_value(); |
| half_claw_position_->front.posedge_count = |
| front->positive_interrupt_count(); |
| half_claw_position_->front.negedge_count = |
| front->negative_interrupt_count(); |
| |
| const auto &calibration = edge_counters()[1]; |
| half_claw_position_->calibration.current = calibration->polled_value(); |
| half_claw_position_->calibration.posedge_count = |
| calibration->positive_interrupt_count(); |
| half_claw_position_->calibration.negedge_count = |
| calibration->negative_interrupt_count(); |
| |
| const auto &back = edge_counters()[2]; |
| half_claw_position_->back.current = back->polled_value(); |
| half_claw_position_->back.posedge_count = back->positive_interrupt_count(); |
| half_claw_position_->back.negedge_count = back->negative_interrupt_count(); |
| |
| const double multiplier = reversed_ ? -1.0 : 1.0; |
| |
| half_claw_position_->position = |
| multiplier * claw_translate(encoder_value()); |
| |
| // We assume here that we can only have 1 sensor have a posedge per cycle. |
| { |
| half_claw_position_->posedge_value = |
| last_half_claw_position_.posedge_value; |
| int posedge_changes = 0; |
| if (half_claw_position_->front.posedge_count != |
| last_half_claw_position_.front.posedge_count) { |
| ++posedge_changes; |
| half_claw_position_->posedge_value = |
| multiplier * claw_translate(front->last_positive_encoder_value()); |
| LOG(INFO, "Got a front posedge\n"); |
| } |
| |
| if (half_claw_position_->back.posedge_count != |
| last_half_claw_position_.back.posedge_count) { |
| ++posedge_changes; |
| half_claw_position_->posedge_value = |
| multiplier * claw_translate(back->last_positive_encoder_value()); |
| LOG(INFO, "Got a back posedge\n"); |
| } |
| |
| if (half_claw_position_->calibration.posedge_count != |
| last_half_claw_position_.calibration.posedge_count) { |
| ++posedge_changes; |
| half_claw_position_->posedge_value = |
| multiplier * |
| claw_translate(calibration->last_positive_encoder_value()); |
| LOG(INFO, "Got a calibration posedge\n"); |
| } |
| |
| if (posedge_changes > 1) { |
| LOG(WARNING, "Found more than 1 positive edge on %s\n", name()); |
| } |
| } |
| |
| { |
| half_claw_position_->negedge_value = |
| last_half_claw_position_.negedge_value; |
| int negedge_changes = 0; |
| if (half_claw_position_->front.negedge_count != |
| last_half_claw_position_.front.negedge_count) { |
| ++negedge_changes; |
| half_claw_position_->negedge_value = |
| multiplier * claw_translate(front->last_negative_encoder_value()); |
| LOG(INFO, "Got a front negedge\n"); |
| } |
| |
| if (half_claw_position_->back.negedge_count != |
| last_half_claw_position_.back.negedge_count) { |
| ++negedge_changes; |
| half_claw_position_->negedge_value = |
| multiplier * claw_translate(back->last_negative_encoder_value()); |
| LOG(INFO, "Got a back negedge\n"); |
| } |
| |
| if (half_claw_position_->calibration.negedge_count != |
| last_half_claw_position_.calibration.negedge_count) { |
| ++negedge_changes; |
| half_claw_position_->negedge_value = |
| multiplier * |
| claw_translate(calibration->last_negative_encoder_value()); |
| LOG(INFO, "Got a calibration negedge\n"); |
| } |
| |
| if (negedge_changes > 1) { |
| LOG(WARNING, "Found more than 1 negative edge on %s\n", name()); |
| } |
| } |
| |
| last_half_claw_position_ = *half_claw_position_; |
| } |
| |
| private: |
| control_loops::HalfClawPosition *half_claw_position_; |
| control_loops::HalfClawPosition last_half_claw_position_; |
| bool reversed_; |
| }; |
| |
| // This class sends out the shooter position state at 100 hz. |
| class ShooterHallSynchronizer : public PeriodicHallSynchronizer<2> { |
| public: |
| // Constructs a ShooterHallSynchronizer. |
| // |
| // priority is the priority of the polling thread. |
| // interrupt_priority is the priority of the interrupt threads. |
| // encoder is the encoder to read. |
| // sensors is an array of hall effect sensors. The sensors[0] is the proximal |
| // sensor, sensors[1] is the distal sensor. |
| // shooter_plunger is the plunger. |
| // shooter_latch is the latch. |
| ShooterHallSynchronizer( |
| int priority, int interrupt_priority, ::std::unique_ptr<Encoder> encoder, |
| ::std::array<::std::unique_ptr<HallEffect>, 2> *sensors, |
| ::std::unique_ptr<HallEffect> shooter_plunger, |
| ::std::unique_ptr<HallEffect> shooter_latch) |
| : PeriodicHallSynchronizer<2>("shooter", priority, interrupt_priority, |
| ::std::move(encoder), sensors), |
| shooter_plunger_(::std::move(shooter_plunger)), |
| shooter_latch_(::std::move(shooter_latch)) {} |
| |
| // Saves the state so that it can be sent if it was synchronized. |
| virtual void SaveState() { |
| auto shooter_position = |
| control_loops::shooter_queue_group.position.MakeMessage(); |
| |
| shooter_position->plunger = shooter_plunger_->GetHall(); |
| shooter_position->latch = shooter_latch_->GetHall(); |
| shooter_position->position = shooter_translate(encoder_value()); |
| |
| { |
| const auto &proximal_edge_counter = edge_counters()[0]; |
| shooter_position->pusher_proximal.current = |
| proximal_edge_counter->polled_value(); |
| shooter_position->pusher_proximal.posedge_count = |
| proximal_edge_counter->positive_interrupt_count(); |
| shooter_position->pusher_proximal.negedge_count = |
| proximal_edge_counter->negative_interrupt_count(); |
| shooter_position->pusher_proximal.posedge_value = shooter_translate( |
| proximal_edge_counter->last_positive_encoder_value()); |
| } |
| |
| { |
| const auto &distal_edge_counter = edge_counters()[1]; |
| shooter_position->pusher_distal.current = |
| distal_edge_counter->polled_value(); |
| shooter_position->pusher_distal.posedge_count = |
| distal_edge_counter->positive_interrupt_count(); |
| shooter_position->pusher_distal.negedge_count = |
| distal_edge_counter->negative_interrupt_count(); |
| shooter_position->pusher_distal.posedge_value = |
| shooter_translate(distal_edge_counter->last_positive_encoder_value()); |
| } |
| |
| shooter_position.Send(); |
| } |
| |
| private: |
| ::std::unique_ptr<HallEffect> shooter_plunger_; |
| ::std::unique_ptr<HallEffect> shooter_latch_; |
| }; |
| |
| class SensorReader { |
| public: |
| SensorReader() |
| : auto_selector_analog_(new AnalogInput(4)), |
| left_encoder_(new Encoder(11, 10, false, Encoder::k2X)), // E0 |
| right_encoder_(new Encoder(13, 12, false, Encoder::k2X)), // E1 |
| low_left_drive_hall_(new AnalogInput(1)), |
| high_left_drive_hall_(new AnalogInput(0)), |
| low_right_drive_hall_(new AnalogInput(2)), |
| high_right_drive_hall_(new AnalogInput(3)), |
| shooter_plunger_(new HallEffect(8)), // S3 |
| shooter_latch_(new HallEffect(9)), // S4 |
| shooter_distal_(new HallEffect(7)), // S2 |
| shooter_proximal_(new HallEffect(6)), // S1 |
| shooter_encoder_(new Encoder(14, 15)), // E2 |
| claw_top_front_hall_(new HallEffect(4)), // R2 |
| claw_top_calibration_hall_(new HallEffect(3)), // R3 |
| claw_top_back_hall_(new HallEffect(5)), // R1 |
| claw_top_encoder_(new Encoder(17, 16)), // E3 |
| // L2 Middle Left hall effect sensor. |
| claw_bottom_front_hall_(new HallEffect(1)), |
| // L3 Bottom Left hall effect sensor |
| claw_bottom_calibration_hall_(new HallEffect(0)), |
| // L1 Top Left hall effect sensor |
| claw_bottom_back_hall_(new HallEffect(2)), |
| claw_bottom_encoder_(new Encoder(21, 20)), // E5 |
| run_(true) { |
| filter_.SetPeriodNanoSeconds(100000); |
| filter_.Add(shooter_plunger_.get()); |
| filter_.Add(shooter_latch_.get()); |
| filter_.Add(shooter_distal_.get()); |
| filter_.Add(shooter_proximal_.get()); |
| filter_.Add(claw_top_front_hall_.get()); |
| filter_.Add(claw_top_calibration_hall_.get()); |
| filter_.Add(claw_top_back_hall_.get()); |
| filter_.Add(claw_bottom_front_hall_.get()); |
| filter_.Add(claw_bottom_calibration_hall_.get()); |
| filter_.Add(claw_bottom_back_hall_.get()); |
| printf("Filtering all hall effect sensors with a %" PRIu64 |
| " nanosecond window\n", |
| filter_.GetPeriodNanoSeconds()); |
| } |
| |
| void operator()() { |
| ::aos::SetCurrentThreadName("SensorReader"); |
| |
| const int kPriority = 30; |
| const int kInterruptPriority = 55; |
| |
| ::std::array<::std::unique_ptr<HallEffect>, 2> shooter_sensors; |
| shooter_sensors[0] = ::std::move(shooter_proximal_); |
| shooter_sensors[1] = ::std::move(shooter_distal_); |
| ShooterHallSynchronizer shooter( |
| kPriority, kInterruptPriority, ::std::move(shooter_encoder_), |
| &shooter_sensors, ::std::move(shooter_plunger_), |
| ::std::move(shooter_latch_)); |
| shooter.StartThread(); |
| |
| ::std::array<::std::unique_ptr<HallEffect>, 3> claw_top_sensors; |
| claw_top_sensors[0] = ::std::move(claw_top_front_hall_); |
| claw_top_sensors[1] = ::std::move(claw_top_calibration_hall_); |
| claw_top_sensors[2] = ::std::move(claw_top_back_hall_); |
| HalfClawHallSynchronizer top_claw("top_claw", kPriority, kInterruptPriority, |
| ::std::move(claw_top_encoder_), |
| &claw_top_sensors, false); |
| |
| ::std::array<::std::unique_ptr<HallEffect>, 3> claw_bottom_sensors; |
| claw_bottom_sensors[0] = ::std::move(claw_bottom_front_hall_); |
| claw_bottom_sensors[1] = ::std::move(claw_bottom_calibration_hall_); |
| claw_bottom_sensors[2] = ::std::move(claw_bottom_back_hall_); |
| HalfClawHallSynchronizer bottom_claw( |
| "bottom_claw", kPriority, kInterruptPriority, |
| ::std::move(claw_bottom_encoder_), &claw_bottom_sensors, true); |
| |
| ::aos::SetCurrentThreadRealtimePriority(kPriority); |
| while (run_) { |
| ::aos::time::PhasedLoopXMS(10, 9000); |
| RunIteration(); |
| |
| auto claw_position = |
| control_loops::claw_queue_group.position.MakeMessage(); |
| bottom_claw.set_position(&claw_position->bottom); |
| top_claw.set_position(&claw_position->top); |
| while (true) { |
| bottom_claw.StartIteration(); |
| top_claw.StartIteration(); |
| |
| // Wait more than the amount of time it takes for a digital input change |
| // to go from visible to software to having triggered an interrupt. |
| ::aos::time::SleepFor(::aos::time::Time::InUS(120)); |
| |
| if (bottom_claw.TryFinishingIteration() && |
| top_claw.TryFinishingIteration()) { |
| break; |
| } |
| } |
| |
| claw_position.Send(); |
| } |
| shooter.Quit(); |
| top_claw.Quit(); |
| bottom_claw.Quit(); |
| } |
| |
| void RunIteration() { |
| //::aos::time::TimeFreezer time_freezer; |
| DriverStation *ds = DriverStation::GetInstance(); |
| |
| bool bad_gyro = true; |
| // TODO(brians): Switch to LogInterval for these things. |
| /* |
| if (data->uninitialized_gyro) { |
| LOG(DEBUG, "uninitialized gyro\n"); |
| bad_gyro = true; |
| } else if (data->zeroing_gyro) { |
| LOG(DEBUG, "zeroing gyro\n"); |
| bad_gyro = true; |
| } else if (data->bad_gyro) { |
| LOG(ERROR, "bad gyro\n"); |
| bad_gyro = true; |
| } else if (data->old_gyro_reading) { |
| LOG(WARNING, "old/bad gyro reading\n"); |
| bad_gyro = true; |
| } else { |
| bad_gyro = false; |
| } |
| */ |
| |
| if (!bad_gyro) { |
| // TODO(austin): Read the gyro. |
| gyro_reading.MakeWithBuilder().angle(0).Send(); |
| } |
| |
| if (ds->IsSysActive()) { |
| auto message = ::aos::controls::output_check_received.MakeMessage(); |
| // TODO(brians): Actually read a pulse value from the roboRIO. |
| message->pwm_value = 0; |
| message->pulse_length = -1; |
| LOG_STRUCT(DEBUG, "received", *message); |
| message.Send(); |
| } |
| |
| ::frc971::sensors::auto_mode.MakeWithBuilder() |
| .voltage(auto_selector_analog_->GetVoltage()) |
| .Send(); |
| |
| // TODO(austin): Calibrate the shifter constants again. |
| drivetrain.position.MakeWithBuilder() |
| .right_encoder(drivetrain_translate(right_encoder_->GetRaw())) |
| .left_encoder(-drivetrain_translate(left_encoder_->GetRaw())) |
| .left_shifter_position( |
| hall_translate(constants::GetValues().left_drive, |
| low_left_drive_hall_->GetVoltage(), |
| high_left_drive_hall_->GetVoltage())) |
| .right_shifter_position( |
| hall_translate(constants::GetValues().right_drive, |
| low_right_drive_hall_->GetVoltage(), |
| high_right_drive_hall_->GetVoltage())) |
| .battery_voltage(ds->GetBatteryVoltage()) |
| .Send(); |
| |
| // Signal that we are allive. |
| ::aos::controls::sensor_generation.MakeWithBuilder() |
| .reader_pid(getpid()) |
| .cape_resets(0) |
| .Send(); |
| } |
| |
| void Quit() { run_ = false; } |
| |
| private: |
| ::std::unique_ptr<AnalogInput> auto_selector_analog_; |
| |
| ::std::unique_ptr<Encoder> left_encoder_; |
| ::std::unique_ptr<Encoder> right_encoder_; |
| ::std::unique_ptr<AnalogInput> low_left_drive_hall_; |
| ::std::unique_ptr<AnalogInput> high_left_drive_hall_; |
| ::std::unique_ptr<AnalogInput> low_right_drive_hall_; |
| ::std::unique_ptr<AnalogInput> high_right_drive_hall_; |
| |
| ::std::unique_ptr<HallEffect> shooter_plunger_; |
| ::std::unique_ptr<HallEffect> shooter_latch_; |
| ::std::unique_ptr<HallEffect> shooter_distal_; |
| ::std::unique_ptr<HallEffect> shooter_proximal_; |
| ::std::unique_ptr<Encoder> shooter_encoder_; |
| |
| ::std::unique_ptr<HallEffect> claw_top_front_hall_; |
| ::std::unique_ptr<HallEffect> claw_top_calibration_hall_; |
| ::std::unique_ptr<HallEffect> claw_top_back_hall_; |
| ::std::unique_ptr<Encoder> claw_top_encoder_; |
| |
| ::std::unique_ptr<HallEffect> claw_bottom_front_hall_; |
| ::std::unique_ptr<HallEffect> claw_bottom_calibration_hall_; |
| ::std::unique_ptr<HallEffect> claw_bottom_back_hall_; |
| ::std::unique_ptr<Encoder> claw_bottom_encoder_; |
| |
| ::std::atomic<bool> run_; |
| DigitalGlitchFilter filter_; |
| }; |
| |
| class MotorWriter { |
| public: |
| MotorWriter() |
| : right_drivetrain_talon_(new Talon(2)), |
| left_drivetrain_talon_(new Talon(5)), |
| shooter_talon_(new Talon(6)), |
| top_claw_talon_(new Talon(1)), |
| bottom_claw_talon_(new Talon(0)), |
| left_tusk_talon_(new Talon(4)), |
| right_tusk_talon_(new Talon(3)), |
| intake1_talon_(new Talon(7)), |
| intake2_talon_(new Talon(8)), |
| left_shifter_(new Solenoid(6)), |
| right_shifter_(new Solenoid(7)), |
| shooter_latch_(new Solenoid(5)), |
| shooter_brake_(new Solenoid(4)), |
| compressor_(new Compressor()) { |
| compressor_->SetClosedLoopControl(true); |
| // right_drivetrain_talon_->EnableDeadbandElimination(true); |
| // left_drivetrain_talon_->EnableDeadbandElimination(true); |
| // shooter_talon_->EnableDeadbandElimination(true); |
| // top_claw_talon_->EnableDeadbandElimination(true); |
| // bottom_claw_talon_->EnableDeadbandElimination(true); |
| // left_tusk_talon_->EnableDeadbandElimination(true); |
| // right_tusk_talon_->EnableDeadbandElimination(true); |
| // intake1_talon_->EnableDeadbandElimination(true); |
| // intake2_talon_->EnableDeadbandElimination(true); |
| } |
| |
| // Maximum age of an output packet before the motors get zeroed instead. |
| static const int kOutputMaxAgeMS = 20; |
| static constexpr ::aos::time::Time kOldLogInterval = |
| ::aos::time::Time::InSeconds(0.5); |
| |
| void Run() { |
| //::aos::time::Time::EnableMockTime(); |
| while (true) { |
| //::aos::time::Time::UpdateMockTime(); |
| // 200 hz loop |
| ::aos::time::PhasedLoopXMS(5, 1000); |
| //::aos::time::Time::UpdateMockTime(); |
| |
| no_robot_state_.Print(); |
| fake_robot_state_.Print(); |
| sending_failed_.Print(); |
| |
| RunIteration(); |
| } |
| } |
| |
| virtual void RunIteration() { |
| ::aos::robot_state.FetchLatest(); |
| if (!::aos::robot_state.get()) { |
| LOG_INTERVAL(no_robot_state_); |
| return; |
| } |
| if (::aos::robot_state->fake) { |
| LOG_INTERVAL(fake_robot_state_); |
| return; |
| } |
| |
| // TODO(austin): Write the motor values out when they change! One thread |
| // per queue. |
| // TODO(austin): Figure out how to synchronize everything to the PWM update |
| // rate, or get the pulse to go out clocked off of this code. That would be |
| // awesome. |
| { |
| static auto &drivetrain = ::frc971::control_loops::drivetrain.output; |
| drivetrain.FetchLatest(); |
| if (drivetrain.IsNewerThanMS(kOutputMaxAgeMS)) { |
| LOG_STRUCT(DEBUG, "will output", *drivetrain); |
| left_drivetrain_talon_->Set(-drivetrain->left_voltage / 12.0); |
| right_drivetrain_talon_->Set(drivetrain->right_voltage / 12.0); |
| left_shifter_->Set(drivetrain->left_high); |
| right_shifter_->Set(drivetrain->right_high); |
| } else { |
| left_drivetrain_talon_->Disable(); |
| right_drivetrain_talon_->Disable(); |
| LOG_INTERVAL(drivetrain_old_); |
| } |
| drivetrain_old_.Print(); |
| } |
| |
| { |
| static auto &shooter = |
| ::frc971::control_loops::shooter_queue_group.output; |
| shooter.FetchLatest(); |
| if (shooter.IsNewerThanMS(kOutputMaxAgeMS)) { |
| LOG_STRUCT(DEBUG, "will output", *shooter); |
| shooter_talon_->Set(shooter->voltage / 12.0); |
| shooter_latch_->Set(!shooter->latch_piston); |
| shooter_brake_->Set(!shooter->brake_piston); |
| } else { |
| shooter_talon_->Disable(); |
| shooter_brake_->Set(false); // engage the brake |
| LOG_INTERVAL(shooter_old_); |
| } |
| shooter_old_.Print(); |
| } |
| |
| { |
| static auto &claw = ::frc971::control_loops::claw_queue_group.output; |
| claw.FetchLatest(); |
| if (claw.IsNewerThanMS(kOutputMaxAgeMS)) { |
| LOG_STRUCT(DEBUG, "will output", *claw); |
| intake1_talon_->Set(claw->intake_voltage / 12.0); |
| intake2_talon_->Set(claw->intake_voltage / 12.0); |
| bottom_claw_talon_->Set(-claw->bottom_claw_voltage / 12.0); |
| top_claw_talon_->Set(claw->top_claw_voltage / 12.0); |
| left_tusk_talon_->Set(claw->tusk_voltage / 12.0); |
| right_tusk_talon_->Set(-claw->tusk_voltage / 12.0); |
| } else { |
| intake1_talon_->Disable(); |
| intake2_talon_->Disable(); |
| bottom_claw_talon_->Disable(); |
| top_claw_talon_->Disable(); |
| left_tusk_talon_->Disable(); |
| right_tusk_talon_->Disable(); |
| LOG_INTERVAL(claw_old_); |
| } |
| claw_old_.Print(); |
| } |
| } |
| |
| SimpleLogInterval drivetrain_old_ = |
| SimpleLogInterval(kOldLogInterval, WARNING, "drivetrain too old"); |
| SimpleLogInterval shooter_old_ = |
| SimpleLogInterval(kOldLogInterval, WARNING, "shooter too old"); |
| SimpleLogInterval claw_old_ = |
| SimpleLogInterval(kOldLogInterval, WARNING, "claw too old"); |
| |
| ::std::unique_ptr<Talon> right_drivetrain_talon_; |
| ::std::unique_ptr<Talon> left_drivetrain_talon_; |
| ::std::unique_ptr<Talon> shooter_talon_; |
| ::std::unique_ptr<Talon> top_claw_talon_; |
| ::std::unique_ptr<Talon> bottom_claw_talon_; |
| ::std::unique_ptr<Talon> left_tusk_talon_; |
| ::std::unique_ptr<Talon> right_tusk_talon_; |
| ::std::unique_ptr<Talon> intake1_talon_; |
| ::std::unique_ptr<Talon> intake2_talon_; |
| |
| ::std::unique_ptr<Solenoid> left_shifter_; |
| ::std::unique_ptr<Solenoid> right_shifter_; |
| ::std::unique_ptr<Solenoid> shooter_latch_; |
| ::std::unique_ptr<Solenoid> shooter_brake_; |
| |
| ::std::unique_ptr<Compressor> compressor_; |
| |
| ::aos::util::SimpleLogInterval no_robot_state_ = |
| ::aos::util::SimpleLogInterval(::aos::time::Time::InSeconds(0.5), INFO, |
| "no robot state -> not outputting"); |
| ::aos::util::SimpleLogInterval fake_robot_state_ = |
| ::aos::util::SimpleLogInterval(::aos::time::Time::InSeconds(0.5), DEBUG, |
| "fake robot state -> not outputting"); |
| ::aos::util::SimpleLogInterval sending_failed_ = |
| ::aos::util::SimpleLogInterval(::aos::time::Time::InSeconds(0.1), WARNING, |
| "sending outputs failed"); |
| }; |
| |
| constexpr ::aos::time::Time MotorWriter::kOldLogInterval; |
| |
| } // namespace wpilib |
| } // namespace frc971 |
| |
| class WPILibRobot : public RobotBase { |
| public: |
| virtual void StartCompetition() { |
| ::aos::Init(); |
| ::aos::SetCurrentThreadName("StartCompetition"); |
| ::frc971::wpilib::MotorWriter writer; |
| ::frc971::wpilib::SensorReader reader; |
| ::std::thread reader_thread(::std::ref(reader)); |
| ::frc971::wpilib::JoystickSender joystick_sender; |
| ::std::thread joystick_thread(::std::ref(joystick_sender)); |
| writer.Run(); |
| LOG(ERROR, "Exiting WPILibRobot\n"); |
| reader.Quit(); |
| reader_thread.join(); |
| joystick_sender.Quit(); |
| joystick_thread.join(); |
| ::aos::Cleanup(); |
| } |
| }; |
| |
| |
| START_ROBOT_CLASS(WPILibRobot); |