| #!/usr/bin/python |
| |
| import numpy |
| import sys |
| import operator |
| |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| |
| from y2016.control_loops.python.shoulder import Shoulder, IntegralShoulder |
| from y2016.control_loops.python.wrist import Wrist, IntegralWrist |
| from aos.common.util.trapezoid_profile import TrapizoidProfile |
| |
| from matplotlib import pylab |
| import gflags |
| import glog |
| |
| FLAGS = gflags.FLAGS |
| |
| try: |
| gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| except gflags.DuplicateFlagError: |
| pass |
| |
| |
| class Arm(control_loop.ControlLoop): |
| def __init__(self, name="Arm"): |
| super(Arm, self).__init__(name=name) |
| self._shoulder = Shoulder(name=name) |
| self._shooter = Wrist(name=name) |
| |
| # Do a coordinate transformation. |
| # X_shooter_grounded = X_shooter + X_shoulder |
| # dX_shooter_grounded/dt = A_shooter * X_shooter + A_shoulder * X_shoulder + |
| # B_shoulder * U_shoulder + B_shooter * U_shooter |
| # dX_shooter_grounded/dt = A_shooter * (X_shooter_grounded - X_shoulder) + |
| # A_shoulder * X_shoulder + B_shooter * U_shooter + B_shoulder * U_shoulder |
| # X = [X_shoulder; X_shooter + X_shoulder] |
| # dX/dt = [A_shoulder 0] [X_shoulder ] + [B_shoulder 0] [U_shoulder] |
| # [(A_shoulder - A_shooter) A_shooter] [X_shooter_grounded] + [B_shoulder B_shooter] [ U_shooter] |
| # Y_shooter_grounded = Y_shooter + Y_shoulder |
| |
| self.A_continuous = numpy.matrix(numpy.zeros((4, 4))) |
| self.A_continuous[0:2, 0:2] = self._shoulder.A_continuous |
| self.A_continuous[2:4, 0:2] = (self._shoulder.A_continuous - |
| self._shooter.A_continuous) |
| self.A_continuous[2:4, 2:4] = self._shooter.A_continuous |
| |
| self.B_continuous = numpy.matrix(numpy.zeros((4, 2))) |
| self.B_continuous[0:2, 0:1] = self._shoulder.B_continuous |
| self.B_continuous[2:4, 1:2] = self._shooter.B_continuous |
| self.B_continuous[2:4, 0:1] = self._shoulder.B_continuous |
| |
| self.C = numpy.matrix(numpy.zeros((2, 4))) |
| self.C[0:1, 0:2] = self._shoulder.C |
| self.C[1:2, 0:2] = -self._shoulder.C |
| self.C[1:2, 2:4] = self._shooter.C |
| |
| # D is 0 for all our loops. |
| self.D = numpy.matrix(numpy.zeros((2, 2))) |
| |
| self.dt = 0.005 |
| |
| self.A, self.B = self.ContinuousToDiscrete( |
| self.A_continuous, self.B_continuous, self.dt) |
| |
| # Cost of error |
| self.Q = numpy.matrix(numpy.zeros((4, 4))) |
| q_pos_shoulder = 0.014 |
| q_vel_shoulder = 4.00 |
| q_pos_shooter = 0.014 |
| q_vel_shooter = 4.00 |
| self.Q[0, 0] = 1.0 / q_pos_shoulder ** 2.0 |
| self.Q[1, 1] = 1.0 / q_vel_shoulder ** 2.0 |
| self.Q[2, 2] = 1.0 / q_pos_shooter ** 2.0 |
| self.Q[3, 3] = 1.0 / q_vel_shooter ** 2.0 |
| |
| self.Qff = numpy.matrix(numpy.zeros((4, 4))) |
| qff_pos_shoulder = 0.005 |
| qff_vel_shoulder = 1.00 |
| qff_pos_shooter = 0.005 |
| qff_vel_shooter = 1.00 |
| self.Qff[0, 0] = 1.0 / qff_pos_shoulder ** 2.0 |
| self.Qff[1, 1] = 1.0 / qff_vel_shoulder ** 2.0 |
| self.Qff[2, 2] = 1.0 / qff_pos_shooter ** 2.0 |
| self.Qff[3, 3] = 1.0 / qff_vel_shooter ** 2.0 |
| |
| # Cost of control effort |
| self.R = numpy.matrix(numpy.zeros((2, 2))) |
| r_voltage = 1.0 / 12.0 |
| self.R[0, 0] = r_voltage ** 2.0 |
| self.R[1, 1] = r_voltage ** 2.0 |
| |
| self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff) |
| |
| glog.debug('Shoulder K') |
| glog.debug(self._shoulder.K) |
| |
| # Compute controller gains. |
| # self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| self.K = numpy.matrix(numpy.zeros((2, 4))) |
| self.K[0:1, 0:2] = self._shoulder.K |
| self.K[1:2, 0:2] = ( |
| -self.Kff[1:2, 2:4] * self.B[2:4, 0:1] * self._shoulder.K |
| + self.Kff[1:2, 2:4] * self.A[2:4, 0:2]) |
| self.K[1:2, 2:4] = self._shooter.K |
| |
| glog.debug('Arm controller %s', repr(self.K)) |
| |
| # Cost of error |
| self.Q = numpy.matrix(numpy.zeros((4, 4))) |
| q_pos_shoulder = 0.05 |
| q_vel_shoulder = 2.65 |
| q_pos_shooter = 0.05 |
| q_vel_shooter = 2.65 |
| self.Q[0, 0] = q_pos_shoulder ** 2.0 |
| self.Q[1, 1] = q_vel_shoulder ** 2.0 |
| self.Q[2, 2] = q_pos_shooter ** 2.0 |
| self.Q[3, 3] = q_vel_shooter ** 2.0 |
| |
| # Cost of control effort |
| self.R = numpy.matrix(numpy.zeros((2, 2))) |
| r_voltage = 0.025 |
| self.R[0, 0] = r_voltage ** 2.0 |
| self.R[1, 1] = r_voltage ** 2.0 |
| |
| self.KalmanGain, self.Q_steady = controls.kalman( |
| A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| self.L = self.A * self.KalmanGain |
| |
| self.U_max = numpy.matrix([[12.0], [12.0]]) |
| self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| |
| self.InitializeState() |
| |
| |
| class IntegralArm(Arm): |
| def __init__(self, name="IntegralArm"): |
| super(IntegralArm, self).__init__(name=name) |
| |
| self.A_continuous_unaugmented = self.A_continuous |
| self.B_continuous_unaugmented = self.B_continuous |
| |
| self.A_continuous = numpy.matrix(numpy.zeros((6, 6))) |
| self.A_continuous[0:4, 0:4] = self.A_continuous_unaugmented |
| self.A_continuous[0:4, 4:6] = self.B_continuous_unaugmented |
| |
| self.B_continuous = numpy.matrix(numpy.zeros((6, 2))) |
| self.B_continuous[0:4, 0:2] = self.B_continuous_unaugmented |
| |
| self.C_unaugmented = self.C |
| self.C = numpy.matrix(numpy.zeros((2, 6))) |
| self.C[0:2, 0:4] = self.C_unaugmented |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt) |
| |
| q_pos_shoulder = 0.08 |
| q_vel_shoulder = 4.00 |
| q_voltage_shoulder = 6.0 |
| q_pos_shooter = 0.08 |
| q_vel_shooter = 4.00 |
| q_voltage_shooter = 6.0 |
| self.Q = numpy.matrix(numpy.zeros((6, 6))) |
| self.Q[0, 0] = q_pos_shoulder ** 2.0 |
| self.Q[1, 1] = q_vel_shoulder ** 2.0 |
| self.Q[2, 2] = q_pos_shooter ** 2.0 |
| self.Q[3, 3] = q_vel_shooter ** 2.0 |
| self.Q[4, 4] = q_voltage_shoulder ** 2.0 |
| self.Q[5, 5] = q_voltage_shooter ** 2.0 |
| |
| self.R = numpy.matrix(numpy.zeros((2, 2))) |
| r_pos = 0.05 |
| self.R[0, 0] = r_pos ** 2.0 |
| self.R[1, 1] = r_pos ** 2.0 |
| |
| self.KalmanGain, self.Q_steady = controls.kalman( |
| A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| self.L = self.A * self.KalmanGain |
| |
| self.K_unaugmented = self.K |
| self.K = numpy.matrix(numpy.zeros((2, 6))) |
| self.K[0:2, 0:4] = self.K_unaugmented |
| self.K[0, 4] = 1 |
| self.K[1, 5] = 1 |
| |
| self.Kff = numpy.concatenate((self.Kff, numpy.matrix(numpy.zeros((2, 2)))), axis=1) |
| |
| self.InitializeState() |
| |
| |
| class ScenarioPlotter(object): |
| def __init__(self): |
| # Various lists for graphing things. |
| self.t = [] |
| self.x_shoulder = [] |
| self.v_shoulder = [] |
| self.a_shoulder = [] |
| self.x_hat_shoulder = [] |
| self.u_shoulder = [] |
| self.offset_shoulder = [] |
| self.x_shooter = [] |
| self.v_shooter = [] |
| self.a_shooter = [] |
| self.x_hat_shooter = [] |
| self.u_shooter = [] |
| self.offset_shooter = [] |
| self.goal_x_shoulder = [] |
| self.goal_v_shoulder = [] |
| self.goal_x_shooter = [] |
| self.goal_v_shooter = [] |
| |
| def run_test(self, arm, end_goal, |
| iterations=200, controller=None, observer=None): |
| """Runs the plant with an initial condition and goal. |
| |
| Args: |
| arm: Arm object to use. |
| end_goal: numpy.Matrix[6, 1], end goal state. |
| iterations: Number of timesteps to run the model for. |
| controller: Arm object to get K from, or None if we should |
| use arm. |
| observer: Arm object to use for the observer, or None if we should |
| use the actual state. |
| """ |
| |
| if controller is None: |
| controller = arm |
| |
| vbat = 12.0 |
| |
| if self.t: |
| initial_t = self.t[-1] + arm.dt |
| else: |
| initial_t = 0 |
| |
| goal = numpy.concatenate((arm.X, numpy.matrix(numpy.zeros((2, 1)))), axis=0) |
| |
| shoulder_profile = TrapizoidProfile(arm.dt) |
| shoulder_profile.set_maximum_acceleration(50.0) |
| shoulder_profile.set_maximum_velocity(10.0) |
| shoulder_profile.SetGoal(goal[0, 0]) |
| shooter_profile = TrapizoidProfile(arm.dt) |
| shooter_profile.set_maximum_acceleration(50.0) |
| shooter_profile.set_maximum_velocity(10.0) |
| shooter_profile.SetGoal(goal[2, 0]) |
| |
| U_last = numpy.matrix(numpy.zeros((2, 1))) |
| for i in xrange(iterations): |
| X_hat = arm.X |
| |
| if observer is not None: |
| observer.Y = arm.Y |
| observer.CorrectObserver(U_last) |
| self.offset_shoulder.append(observer.X_hat[4, 0]) |
| self.offset_shooter.append(observer.X_hat[5, 0]) |
| |
| X_hat = observer.X_hat |
| self.x_hat_shoulder.append(observer.X_hat[0, 0]) |
| self.x_hat_shooter.append(observer.X_hat[2, 0]) |
| |
| next_shoulder_goal = shoulder_profile.Update(end_goal[0, 0], end_goal[1, 0]) |
| next_shooter_goal = shooter_profile.Update(end_goal[2, 0], end_goal[3, 0]) |
| |
| next_goal = numpy.concatenate( |
| (next_shoulder_goal, |
| next_shooter_goal, |
| numpy.matrix(numpy.zeros((2, 1)))), |
| axis=0) |
| self.goal_x_shoulder.append(goal[0, 0]) |
| self.goal_v_shoulder.append(goal[1, 0]) |
| self.goal_x_shooter.append(goal[2, 0]) |
| self.goal_v_shooter.append(goal[3, 0]) |
| |
| ff_U = controller.Kff * (next_goal - observer.A * goal) |
| |
| U_uncapped = controller.K * (goal - X_hat) + ff_U |
| U = U_uncapped.copy() |
| |
| U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat) |
| U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat) |
| self.x_shoulder.append(arm.X[0, 0]) |
| self.x_shooter.append(arm.X[2, 0]) |
| |
| if self.v_shoulder: |
| last_v_shoulder = self.v_shoulder[-1] |
| else: |
| last_v_shoulder = 0 |
| self.v_shoulder.append(arm.X[1, 0]) |
| self.a_shoulder.append( |
| (self.v_shoulder[-1] - last_v_shoulder) / arm.dt) |
| |
| if self.v_shooter: |
| last_v_shooter = self.v_shooter[-1] |
| else: |
| last_v_shooter = 0 |
| self.v_shooter.append(arm.X[3, 0]) |
| self.a_shooter.append( |
| (self.v_shooter[-1] - last_v_shooter) / arm.dt) |
| |
| if i % 40 == 0: |
| # Test that if we move the shoulder, the shooter stays perfect. |
| #observer.X_hat[0, 0] += 0.20 |
| #arm.X[0, 0] += 0.20 |
| pass |
| U_error = numpy.matrix([[0.0], [0.0]]) |
| # Kick it and see what happens. |
| #if (initial_t + i * arm.dt) % 0.4 > 0.2: |
| #U_error = numpy.matrix([[4.0], [0.0]]) |
| #else: |
| #U_error = numpy.matrix([[-4.0], [0.0]]) |
| |
| arm.Update(U + U_error) |
| |
| if observer is not None: |
| observer.PredictObserver(U) |
| |
| self.t.append(initial_t + i * arm.dt) |
| self.u_shoulder.append(U[0, 0]) |
| self.u_shooter.append(U[1, 0]) |
| |
| glog.debug('Time: %f', self.t[-1]) |
| |
| ff_U -= U_uncapped - U |
| goal = controller.A * goal + controller.B * ff_U |
| |
| if U[0, 0] != U_uncapped[0, 0]: |
| glog.debug('Moving shoulder %s', repr(initial_t + i * arm.dt)) |
| glog.debug('U error %s', repr(U_uncapped - U)) |
| glog.debug('goal change is %s', |
| repr(next_shoulder_goal - |
| numpy.matrix([[goal[0, 0]], [goal[1, 0]]]))) |
| shoulder_profile.MoveCurrentState( |
| numpy.matrix([[goal[0, 0]], [goal[1, 0]]])) |
| if U[1, 0] != U_uncapped[1, 0]: |
| glog.debug('Moving shooter %s', repr(initial_t + i * arm.dt)) |
| glog.debug('U error %s', repr(U_uncapped - U)) |
| shooter_profile.MoveCurrentState( |
| numpy.matrix([[goal[2, 0]], [goal[3, 0]]])) |
| U_last = U |
| glog.debug('goal_error %s', repr(end_goal - goal)) |
| glog.debug('error %s', repr(observer.X_hat - end_goal)) |
| |
| |
| def Plot(self): |
| pylab.subplot(3, 1, 1) |
| pylab.plot(self.t, self.x_shoulder, label='x shoulder') |
| pylab.plot(self.t, self.goal_x_shoulder, label='goal x shoulder') |
| pylab.plot(self.t, self.x_hat_shoulder, label='x_hat shoulder') |
| |
| pylab.plot(self.t, self.x_shooter, label='x shooter') |
| pylab.plot(self.t, self.x_hat_shooter, label='x_hat shooter') |
| pylab.plot(self.t, self.goal_x_shooter, label='goal x shooter') |
| pylab.plot(self.t, map(operator.add, self.x_shooter, self.x_shoulder), |
| label='x shooter ground') |
| pylab.plot(self.t, map(operator.add, self.x_hat_shooter, self.x_hat_shoulder), |
| label='x_hat shooter ground') |
| pylab.legend() |
| |
| pylab.subplot(3, 1, 2) |
| pylab.plot(self.t, self.u_shoulder, label='u shoulder') |
| pylab.plot(self.t, self.offset_shoulder, label='voltage_offset shoulder') |
| pylab.plot(self.t, self.u_shooter, label='u shooter') |
| pylab.plot(self.t, self.offset_shooter, label='voltage_offset shooter') |
| pylab.legend() |
| |
| pylab.subplot(3, 1, 3) |
| pylab.plot(self.t, self.a_shoulder, label='a_shoulder') |
| pylab.plot(self.t, self.a_shooter, label='a_shooter') |
| pylab.legend() |
| |
| pylab.show() |
| |
| |
| def main(argv): |
| argv = FLAGS(argv) |
| glog.init() |
| |
| scenario_plotter = ScenarioPlotter() |
| |
| arm = Arm() |
| arm_controller = IntegralArm() |
| arm_observer = IntegralArm() |
| |
| # Test moving the shoulder with constant separation. |
| initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]) |
| R = numpy.matrix([[numpy.pi / 2.0], |
| [0.0], |
| [0.0], #[numpy.pi / 2.0], |
| [0.0], |
| [0.0], |
| [0.0]]) |
| arm.X = initial_X[0:4, 0] |
| arm_observer.X = initial_X |
| |
| scenario_plotter.run_test(arm=arm, |
| end_goal=R, |
| iterations=300, |
| controller=arm_controller, |
| observer=arm_observer) |
| |
| if len(argv) != 5: |
| glog.fatal('Expected .h file name and .cc file name for the wrist and integral wrist.') |
| else: |
| namespaces = ['y2016', 'control_loops', 'superstructure'] |
| loop_writer = control_loop.ControlLoopWriter('Arm', [arm], |
| namespaces=namespaces) |
| loop_writer.Write(argv[1], argv[2]) |
| |
| integral_loop_writer = control_loop.ControlLoopWriter( |
| 'IntegralArm', [arm_controller], namespaces=namespaces) |
| integral_loop_writer.Write(argv[3], argv[4]) |
| |
| if FLAGS.plot: |
| scenario_plotter.Plot() |
| |
| if __name__ == '__main__': |
| sys.exit(main(sys.argv)) |