/* | |
# | |
# File : nlmeans.h | |
# ( C++ header file - CImg plug-in ) | |
# | |
# Description : CImg plugin that implements the non-local mean filter. | |
# This file is a part of the CImg Library project. | |
# ( http://cimg.eu ) | |
# | |
# [1] Buades, A.; Coll, B.; Morel, J.-M.: A non-local algorithm for image denoising | |
# IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. | |
# Volume 2, 20-25 June 2005 Page(s):60 - 65 vol. 2 | |
# | |
# [2] Buades, A. Coll, B. and Morel, J.: A review of image denoising algorithms, with a new one. | |
# Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal 4 (2004) 490-530 | |
# | |
# [3] Gasser, T. Sroka,L. Jennen Steinmetz,C. Residual variance and residual pattern nonlinear regression. | |
# Biometrika 73 (1986) 625-659 | |
# | |
# Copyright : Jerome Boulanger | |
# ( http://www.irisa.fr/vista/Equipe/People/Jerome.Boulanger.html ) | |
# | |
# License : CeCILL v2.0 | |
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) | |
# | |
# This software is governed by the CeCILL license under French law and | |
# abiding by the rules of distribution of free software. You can use, | |
# modify and/ or redistribute the software under the terms of the CeCILL | |
# license as circulated by CEA, CNRS and INRIA at the following URL | |
# "http://www.cecill.info". | |
# | |
# As a counterpart to the access to the source code and rights to copy, | |
# modify and redistribute granted by the license, users are provided only | |
# with a limited warranty and the software's author, the holder of the | |
# economic rights, and the successive licensors have only limited | |
# liability. | |
# | |
# In this respect, the user's attention is drawn to the risks associated | |
# with loading, using, modifying and/or developing or reproducing the | |
# software by the user in light of its specific status of free software, | |
# that may mean that it is complicated to manipulate, and that also | |
# therefore means that it is reserved for developers and experienced | |
# professionals having in-depth computer knowledge. Users are therefore | |
# encouraged to load and test the software's suitability as regards their | |
# requirements in conditions enabling the security of their systems and/or | |
# data to be ensured and, more generally, to use and operate it in the | |
# same conditions as regards security. | |
# | |
# The fact that you are presently reading this means that you have had | |
# knowledge of the CeCILL license and that you accept its terms. | |
# | |
*/ | |
#ifndef cimg_plugin_nlmeans | |
#define cimg_plugin_nlmeans | |
//! NL-Means denoising algorithm. | |
/** | |
This is the in-place version of get_nlmean(). | |
**/ | |
CImg<T>& nlmeans(int patch_size=1, double lambda=-1, double alpha=3, double sigma=-1, int sampling=1){ | |
if (!is_empty()){ | |
if (sigma<0) sigma = std::sqrt(variance_noise()); // noise variance estimation | |
const double np = (2*patch_size + 1)*(2*patch_size + 1)*spectrum()/(double)sampling; | |
if (lambda<0) {// Bandwidth estimation | |
if (np<100) | |
lambda = ((((((1.1785e-12*np - 5.1827e-10)*np + 9.5946e-08)*np - | |
9.7798e-06)*np + 6.0756e-04)*np - 0.0248)*np + 1.9203)*np + 7.9599; | |
else | |
lambda = (-7.2611e-04*np + 1.3213)*np + 15.2726; | |
} | |
#if cimg_debug>=1 | |
std::fprintf(stderr,"Size of the patch : %dx%d \n", | |
2*patch_size + 1,2*patch_size + 1); | |
std::fprintf(stderr,"Size of window where similar patch are looked for : %dx%d \n", | |
(int)(alpha*(2*patch_size + 1)),(int)(alpha*(2*patch_size + 1))); | |
std::fprintf(stderr,"Bandwidth of the kernel : %fx%f^2 \n", | |
lambda,sigma); | |
std::fprintf(stderr,"Noise standard deviation estimated to : %f \n", | |
sigma); | |
#endif | |
CImg<T> dest(width(),height(),depth(),spectrum(),0); | |
double *uhat = new double[spectrum()]; | |
const double h2 = -.5/(lambda*sigma*sigma); // [Kervrann] notations | |
if (depth()!=1){ // 3D case | |
const CImg<> P = (*this).get_blur(1); // inspired from Mahmoudi&Sapiro SPletter dec 05 | |
const int n_simu = 64; | |
CImg<> tmp(n_simu,n_simu,n_simu); | |
const double sig = std::sqrt(tmp.fill(0.f).noise(sigma).blur(1).pow(2.).sum()/(n_simu*n_simu*n_simu)); | |
const int | |
patch_size_z = 0, | |
pxi = (int)(alpha*patch_size), | |
pyi = (int)(alpha*patch_size), | |
pzi = 2; //Define the size of the neighborhood in z | |
for (int zi = 0; zi<depth(); ++zi) { | |
#if cimg_debug>=1 | |
std::fprintf(stderr,"\rProcessing : %3d %%",(int)((float)zi/(float)depth()*100.));fflush(stdout); | |
#endif | |
for (int yi = 0; yi<height(); ++yi) | |
for (int xi = 0; xi<width(); ++xi) { | |
cimg_forC(*this,v) uhat[v] = 0; | |
float sw = 0, wmax = -1; | |
for (int zj = std::max(0,zi - pzi); zj<std::min(depth(),zi + pzi + 1); ++zj) | |
for (int yj = std::max(0,yi - pyi); yj<std::min(height(),yi + pyi + 1); ++yj) | |
for (int xj = std::max(0,xi - pxi); xj<std::min(width(),xi + pxi + 1); ++xj) | |
if (cimg::abs(P(xi,yi,zi) - P(xj,yj,zj))/sig<3) { | |
double d = 0; | |
int n = 0; | |
if (xi!=xj && yi!=yj && zi!=zj){ | |
for (int kz = -patch_size_z; kz<patch_size_z + 1; kz+=sampling) { | |
int | |
zj_ = zj + kz, | |
zi_ = zi + kz; | |
if (zj_>=0 && zj_<depth() && zi_>=0 && zi_<depth()) | |
for (int ky = -patch_size; ky<=patch_size; ky+=sampling) { | |
int | |
yj_ = yj + ky, | |
yi_ = yi + ky; | |
if (yj_>=0 && yj_<height() && yi_>=0 && yi_<height()) | |
for (int kx = -patch_size; kx<=patch_size; kx+=sampling) { | |
int | |
xj_ = xj + kx, | |
xi_ = xi + kx; | |
if (xj_>=0 && xj_<width() && xi_>=0 && xi_<width()) | |
cimg_forC(*this,v) { | |
double d1 = (*this)(xj_,yj_,zj_,v) - (*this)(xi_,yi_,zi_,v); | |
d+=d1*d1; | |
++n; | |
} | |
} | |
} | |
} | |
float w = (float)std::exp(d*h2); | |
wmax = w>wmax?w:wmax; | |
cimg_forC(*this,v) uhat[v]+=w*(*this)(xj,yj,zj,v); | |
sw+=w; | |
} | |
} | |
// add the central pixel | |
cimg_forC(*this,v) uhat[v]+=wmax*(*this)(xi,yi,zi,v); | |
sw+=wmax; | |
if (sw) cimg_forC(*this,v) dest(xi,yi,zi,v) = (T)(uhat[v]/=sw); | |
else cimg_forC(*this,v) dest(xi,yi,zi,v) = (*this)(xi,yi,zi,v); | |
} | |
} | |
} | |
else { // 2D case | |
const CImg<> P = (*this).get_blur(1); // inspired from Mahmoudi&Sapiro SPletter dec 05 | |
const int n_simu = 512; | |
CImg<> tmp(n_simu,n_simu); | |
const double sig = std::sqrt(tmp.fill(0.f).noise(sigma).blur(1).pow(2.).sum()/(n_simu*n_simu)); | |
const int | |
pxi = (int)(alpha*patch_size), | |
pyi = (int)(alpha*patch_size); //Define the size of the neighborhood | |
for (int yi = 0; yi<height(); ++yi) { | |
#if cimg_debug>=1 | |
std::fprintf(stderr,"\rProcessing : %3d %%",(int)((float)yi/(float)height()*100.));fflush(stdout); | |
#endif | |
for (int xi = 0; xi<width(); ++xi) { | |
cimg_forC(*this,v) uhat[v] = 0; | |
float sw = 0, wmax = -1; | |
for (int yj = std::max(0,yi - pyi); yj<std::min(height(),yi + pyi + 1); ++yj) | |
for (int xj = std::max(0,xi - pxi); xj<std::min(width(),xi + pxi + 1); ++xj) | |
if (cimg::abs(P(xi,yi) - P(xj,yj))/sig<3.) { | |
double d = 0; | |
int n = 0; | |
if (!(xi==xj && yi==yj)) //{ | |
for (int ky = -patch_size; ky<patch_size + 1; ky+=sampling) { | |
int | |
yj_ = yj + ky, | |
yi_ = yi + ky; | |
if (yj_>=0 && yj_<height() && yi_>=0 && yi_<height()) | |
for (int kx = -patch_size; kx<patch_size + 1; kx+=sampling) { | |
int | |
xj_ = xj + kx, | |
xi_ = xi + kx; | |
if (xj_>=0 && xj_<width() && xi_>=0 && xi_<width()) | |
cimg_forC(*this,v) { | |
double d1 = (*this)(xj_,yj_,v) - (*this)(xi_,yi_,v); | |
d+=d1*d1; | |
n++; | |
} | |
} | |
//} | |
float w = (float)std::exp(d*h2); | |
cimg_forC(*this,v) uhat[v]+=w*(*this)(xj,yj,v); | |
wmax = w>wmax?w:wmax; // Store the maximum of the weights | |
sw+=w; // Compute the sum of the weights | |
} | |
} | |
// add the central pixel with the maximum weight | |
cimg_forC(*this,v) uhat[v]+=wmax*(*this)(xi,yi,v); | |
sw+=wmax; | |
// Compute the estimate for the current pixel | |
if (sw) cimg_forC(*this,v) dest(xi,yi,v) = (T)(uhat[v]/=sw); | |
else cimg_forC(*this,v) dest(xi,yi,v) = (*this)(xi,yi,v); | |
} | |
} // main loop | |
} // 2d | |
delete [] uhat; | |
dest.move_to(*this); | |
#if cimg_debug>=1 | |
std::fprintf(stderr,"\n"); // make a new line | |
#endif | |
} // is empty | |
return *this; | |
} | |
//! Get the result of the NL-Means denoising algorithm. | |
/** | |
\param patch_size = radius of the patch (1=3x3 by default) | |
\param lambda = bandwidth ( -1 by default : automatic selection) | |
\param alpha = size of the region where similar patch are searched (3 x patch_size = 9x9 by default) | |
\param sigma = noise standard deviation (-1 = estimation) | |
\param sampling = sampling of the patch (1 = uses all point, 2 = uses one point on 4, etc) | |
If the image has three dimensions then the patch is only in 2D and the neighborhood extent in time is only 5. | |
If the image has several channel (color images), the distance between the two patch is computed using | |
all the channels. | |
The greater the patch is the best is the result. | |
Lambda parameter is function of the size of the patch size. The automatic Lambda parameter is taken | |
in the Chi2 table at a significiance level of 0.01. This diffear from the original paper [1]. | |
The weighted average becomes then: | |
\f$$ \hat{f}(x,y) = \sum_{x',y'} \frac{1}{Z} exp(\frac{P(x,y)-P(x',y')}{2 \lambda \sigma^2}) f(x',y') $$\f | |
where \f$ P(x,y) $\f denotes the patch in (x,y) location. | |
An a priori is also used to increase the speed of the algorithm in the spirit of Sapiro et al. SPletter dec 05 | |
This very basic version of the Non-Local Means algorithm provides an output image which contains | |
some residual noise with a relatively small variance (\f$\sigma<5$\f). | |
[1] A non-local algorithm for image denoising | |
Buades, A.; Coll, B.; Morel, J.-M.; | |
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on | |
Volume 2, 20-25 June 2005 Page(s):60 - 65 vol. 2 | |
**/ | |
CImg<T> get_nlmeans( int patch_size=1, double lambda=-1, double alpha=3 ,double sigma=-1, int sampling=1) const { | |
return CImg<T>(*this).nlmeans(patch_size,lambda,alpha,sigma,sampling); | |
} | |
#endif /* cimg_plugin_nlmeans */ |