| #!/usr/bin/python3 |
| |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| import numpy |
| import math |
| import scipy.optimize |
| import sys |
| import math |
| from y2022.control_loops.python import catapult_lib |
| from matplotlib import pylab |
| |
| import gflags |
| import glog |
| |
| FLAGS = gflags.FLAGS |
| |
| gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| |
| ball_mass = 0.25 |
| ball_diameter = 9.5 * 0.0254 |
| lever = 17.5 * 0.0254 |
| |
| G = (14.0 / 72.0) * (12.0 / 33.0) |
| |
| |
| def AddResistance(motor, resistance): |
| motor.resistance += resistance |
| return motor |
| |
| |
| J_ball = 1.5 * ball_mass * lever * lever |
| # Assuming carbon fiber, calculate the mass of the bar. |
| M_bar = (1750 * lever * 0.0254 * 0.0254 * (1.0 - (1 - 0.07)**2.0)) |
| # And the moment of inertia. |
| J_bar = 1.0 / 3.0 * M_bar * lever**2.0 |
| |
| # Do the same for a theoretical cup. Assume a 40 thou thick carbon cup. |
| M_cup = (1750 * 0.0254 * 0.04 * 2 * math.pi * (ball_diameter / 2.)**2.0) |
| J_cup = M_cup * lever**2.0 + M_cup * (ball_diameter / 2.)**2.0 |
| |
| print("J ball", ball_mass * lever * lever) |
| print("J bar", J_bar) |
| print("bar mass", M_bar) |
| print("J cup", J_cup) |
| print("cup mass", M_cup) |
| |
| J = (J_ball + J_bar + J_cup * 1.5) |
| print("J", J) |
| |
| kCatapult = catapult_lib.CatapultParams( |
| name='Finisher', |
| motor=AddResistance(control_loop.NMotor(control_loop.Falcon(), 2), 0.03), |
| G=G, |
| J=J, |
| lever=lever, |
| q_pos=0.01, |
| q_vel=10.0, |
| q_voltage=4.0, |
| r_pos=0.01, |
| controller_poles=[.93], |
| dt=0.00505) |
| |
| catapult = catapult_lib.Catapult(kCatapult) |
| |
| # Ideas for adjusting the cost function: |
| # |
| # Penalize battery current? |
| # Penalize accel/rotor current? |
| # Penalize velocity error off destination? |
| # Penalize max u |
| # |
| # Ramp up U cost over time? |
| # Once moving, open up saturation bounds |
| # |
| # We really want our cost function to be robust so that we can tolerate the |
| # battery not delivering like we want at the end. |
| |
| |
| def mpc_cost(X_initial, X_final, u_matrix): |
| X = X_initial.copy() |
| cost = 0.0 |
| last_u = u_matrix[0] |
| max_u = 0.0 |
| for count, u in enumerate(u_matrix): |
| v_prior = X[1, 0] |
| X = catapult.A * X + catapult.B * numpy.matrix([[u]]) |
| v = X[1, 0] |
| |
| # Smoothness cost on voltage change and voltage. |
| #cost += (u - last_u) ** 2.0 |
| #cost += (u - 6.0) ** 2.0 |
| |
| measured_a = (v - v_prior) / catapult.dt |
| expected_a = 0.0 |
| |
| # Our good cost! |
| cost_scalar = 0.02 * max(0.0, (20 - (len(u_matrix) - count)) / 20.) |
| cost += ((measured_a - expected_a) * cost_scalar)**2.0 |
| cost += (measured_a * 0.010)**2.0 |
| |
| # Quadratic cost. This delays as long as possible, but approximates a |
| # LQR until saturation. |
| #cost += (u - 0.0) ** 2.0 |
| #cost += (0.1 * (X_final[0, 0] - X[0, 0])) ** 2.0 |
| #cost += (0.5 * (X_final[1, 0] - X[1, 0])) ** 2.0 |
| |
| max_u = max(u, max_u) |
| last_u = u |
| |
| # Penalize max power usage. This is hard to solve. |
| #cost += max_u * 10 |
| |
| terminal_cost = (X - X_final).transpose() * numpy.matrix( |
| [[10000.0, 0.0], [0.0, 10000.0]]) * (X - X_final) |
| cost += terminal_cost[0, 0] |
| |
| return cost |
| |
| |
| def SolveCatapult(X_initial, X_final, u): |
| """ Solves for the optimal action given a seed, state, and target """ |
| def vbat_constraint(z, i): |
| return 12.0 - z[i] |
| |
| def forward(z, i): |
| return z[i] |
| |
| def mpc_cost2(u_matrix): |
| return mpc_cost(X_initial, X_final, u_matrix) |
| |
| constraints = [{ |
| 'type': 'ineq', |
| 'fun': vbat_constraint, |
| 'args': (i, ) |
| } for i in numpy.arange(len(u))] |
| |
| constraints += [{ |
| 'type': 'ineq', |
| 'fun': forward, |
| 'args': (i, ) |
| } for i in numpy.arange(len(u))] |
| |
| result = scipy.optimize.minimize(mpc_cost2, |
| u, |
| method='SLSQP', |
| constraints=constraints) |
| print(result) |
| |
| return result.x |
| |
| |
| def CatapultProblem(): |
| c = catapult_lib.Catapult(kCatapult) |
| |
| kHorizon = 40 |
| |
| u = [0.0] * kHorizon |
| X_initial = numpy.matrix([[0.0], [0.0]]) |
| X_final = numpy.matrix([[2.0], [25.0]]) |
| |
| |
| X_initial = numpy.matrix([[0.0], [0.0]]) |
| X = X_initial.copy() |
| |
| t_samples = [0.0] |
| x_samples = [0.0] |
| v_samples = [0.0] |
| a_samples = [0.0] |
| |
| # Iteratively solve our MPC and simulate it. |
| u_samples = [] |
| for i in range(kHorizon): |
| u_horizon = SolveCatapult(X, X_final, u) |
| u_samples.append(u_horizon[0]) |
| v_prior = X[1, 0] |
| X = c.A * X + c.B * numpy.matrix([[u_horizon[0]]]) |
| v = X[1, 0] |
| t_samples.append(t_samples[-1] + c.dt) |
| x_samples.append(X[0, 0]) |
| v_samples.append(X[1, 0]) |
| a_samples.append((v - v_prior) / c.dt) |
| |
| u = u_horizon[1:] |
| |
| print('Final state', X.transpose()) |
| print('Final velocity', X[1, 0] * lever) |
| pylab.subplot(2, 1, 1) |
| pylab.plot(t_samples, x_samples, label="x") |
| pylab.plot(t_samples, v_samples, label="v") |
| pylab.plot(t_samples[1:], u_samples, label="u") |
| pylab.legend() |
| pylab.subplot(2, 1, 2) |
| pylab.plot(t_samples, a_samples, label="a") |
| pylab.legend() |
| |
| pylab.show() |
| |
| |
| def main(argv): |
| # Do all our math with a lower voltage so we have headroom. |
| U = numpy.matrix([[9.0]]) |
| print( |
| "For G:", G, " max speed ", |
| catapult_lib.MaxSpeed(params=kCatapult, |
| U=U, |
| final_position=math.pi / 2.0)) |
| |
| CatapultProblem() |
| |
| if FLAGS.plot: |
| catapult_lib.PlotShot(kCatapult, U, final_position=math.pi / 4.0) |
| |
| gs = [] |
| speed = [] |
| for i in numpy.linspace(0.01, 0.15, 150): |
| kCatapult.G = i |
| gs.append(kCatapult.G) |
| speed.append( |
| catapult_lib.MaxSpeed(params=kCatapult, |
| U=U, |
| final_position=math.pi / 2.0)) |
| pylab.plot(gs, speed, label="max_speed") |
| pylab.show() |
| return 0 |
| |
| |
| if __name__ == '__main__': |
| argv = FLAGS(sys.argv) |
| sys.exit(main(argv)) |