| #ifndef Y2022_CONTROL_LOOPS_SUPERSTRUCTURE_CATAPULT_CATAPULT_H_ |
| #define Y2022_CONTROL_LOOPS_SUPERSTRUCTURE_CATAPULT_CATAPULT_H_ |
| |
| #include "Eigen/Dense" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| #include "glog/logging.h" |
| #include "osqp++.h" |
| #include "y2022/constants.h" |
| #include "y2022/control_loops/superstructure/superstructure_goal_generated.h" |
| #include "y2022/control_loops/superstructure/superstructure_position_generated.h" |
| #include "y2022/control_loops/superstructure/superstructure_status_generated.h" |
| |
| namespace y2022 { |
| namespace control_loops { |
| namespace superstructure { |
| namespace catapult { |
| |
| // MPC problem for a specified horizon. This contains all the state for the |
| // solver, setters to modify the current and target state, and a way to fetch |
| // the solution. |
| class MPCProblem { |
| public: |
| MPCProblem(size_t horizon, |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P, |
| Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q, |
| Eigen::Matrix<double, 2, 2> Af, |
| Eigen::Matrix<double, Eigen::Dynamic, 2> final_q); |
| |
| MPCProblem(MPCProblem const &) = delete; |
| void operator=(MPCProblem const &x) = delete; |
| |
| // Sets the current and final state. This keeps the problem in tact and |
| // doesn't recreate it, so it will be fast. |
| void SetState(Eigen::Matrix<double, 2, 1> X_initial, |
| Eigen::Matrix<double, 2, 1> X_final); |
| |
| // Solves our problem. |
| bool Solve(); |
| |
| double solve_time() const { return solve_time_; } |
| |
| // Returns the solution that the solver found when Solve was last called. |
| double U(size_t i) const { return solver_.primal_solution()(i); } |
| |
| // Returns the number of U's to be solved. |
| size_t horizon() const { return horizon_; } |
| |
| // Warm starts the optimizer with the provided solution to make it solve |
| // faster. |
| void WarmStart(const MPCProblem &p); |
| |
| private: |
| // The number of u's to solve for. |
| const size_t horizon_; |
| |
| // The problem statement variables needed by SetState to update q. |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q_; |
| const Eigen::Matrix<double, 2, 2> Af_; |
| const Eigen::Matrix<double, Eigen::Dynamic, 2> final_q_; |
| |
| Eigen::Matrix<double, 2, 1> X_initial_; |
| Eigen::Matrix<double, 2, 1> X_final_; |
| |
| Eigen::Matrix<double, Eigen::Dynamic, 1> objective_vector_; |
| |
| // Solver state. |
| osqp::OsqpInstance instance_; |
| osqp::OsqpSolver solver_; |
| osqp::OsqpSettings settings_; |
| |
| double solve_time_ = 0; |
| }; |
| |
| // Decently efficient problem generator for multiple horizons given a max |
| // horizon to solve for. |
| // |
| // The math is documented in mpc.tex |
| class CatapultProblemGenerator { |
| public: |
| // Builds a problem generator for the specified max horizon and caches a lot |
| // of the state. |
| CatapultProblemGenerator(size_t horizon); |
| |
| // Returns the maximum horizon. |
| size_t horizon() const { return horizon_; } |
| |
| // Makes a problem for the specificed horizon. |
| std::unique_ptr<MPCProblem> MakeProblem(size_t horizon); |
| |
| // Returns the P and Q matrices for the problem statement. |
| // cost = 0.5 X.T P X + q.T X |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> P(size_t horizon); |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> q( |
| size_t horizon, Eigen::Matrix<double, 2, 1> X_initial, |
| Eigen::Matrix<double, 2, 1> X_final); |
| |
| private: |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> accel_q(size_t horizon); |
| |
| const Eigen::Matrix<double, 2, 2> Af(size_t horizon); |
| const Eigen::Matrix<double, 2, Eigen::Dynamic> Bf(size_t horizon); |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Pi( |
| size_t horizon); |
| |
| // These functions are used in the constructor to build up the matrices below. |
| Eigen::Matrix<double, Eigen::Dynamic, 2> MakeAs(); |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeBs(); |
| Eigen::Matrix<double, Eigen::Dynamic, 1> Makem(); |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeM(); |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeW(); |
| Eigen::Matrix<double, Eigen::Dynamic, 1> Makew(); |
| Eigen::DiagonalMatrix<double, Eigen::Dynamic> MakePi(); |
| Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> MakeP(); |
| |
| const StateFeedbackPlant<2, 1, 1> plant_; |
| const size_t horizon_; |
| |
| const Eigen::DiagonalMatrix<double, 2> Q_final_; |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, 2> As_; |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Bs_; |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> m_; |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> M_; |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> W_; |
| const Eigen::Matrix<double, Eigen::Dynamic, 1> w_; |
| const Eigen::DiagonalMatrix<double, Eigen::Dynamic> Pi_; |
| |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> WM_; |
| const Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> Wmpw_; |
| }; |
| |
| // A class to hold all the state needed to manage the catapult MPC solvers for |
| // repeated shots. |
| // |
| // The solver may take a couple of cycles to get everything converged and ready. |
| // The flow is as follows: |
| // 1) Reset() the state for the new problem. |
| // 2) Update to the current state with SetState() |
| // 3) Call Solve(). This will return true if it is ready to be executed, false |
| // if it needs more iterations to fully converge. |
| // 4) Next() returns the current optimal control output and advances the |
| // pointers to the next problem. |
| // 5) Go back to 2 for the next cycle. |
| class CatapultController { |
| public: |
| CatapultController(size_t horizon); |
| |
| // Starts back over at the first controller. |
| void Reset(); |
| |
| // Updates our current and final states for the current controller. |
| void SetState(Eigen::Matrix<double, 2, 1> X_initial, |
| Eigen::Matrix<double, 2, 1> X_final); |
| |
| // Solves! Returns true if the solution converged and osqp was happy. |
| bool Solve(); |
| |
| // Returns the time in seconds it last took Solve to run. |
| double solve_time() const { return solve_time_; } |
| |
| // Returns the controller value if there is a controller to run, or nullopt if |
| // we finished the last controller. Advances the controller pointer to the |
| // next controller and warms up the next controller. |
| std::optional<double> Next(); |
| |
| // Returns true if Next has been called and a controller has been used. Reset |
| // starts over. |
| bool started() const { return current_controller_ != 0u; } |
| |
| private: |
| CatapultProblemGenerator generator_; |
| |
| std::vector<std::unique_ptr<MPCProblem>> problems_; |
| |
| size_t current_controller_ = 0; |
| double solve_time_ = 0.0; |
| }; |
| |
| // Class to handle transitioning between both the profiled subsystem and the MPC |
| // for shooting. |
| class Catapult { |
| public: |
| Catapult(const constants::Values &values) |
| : catapult_(values.catapult.subsystem_params), catapult_mpc_(35) {} |
| |
| using PotAndAbsoluteEncoderSubsystem = |
| ::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystem< |
| ::frc971::zeroing::PotAndAbsoluteEncoderZeroingEstimator, |
| ::frc971::control_loops::PotAndAbsoluteEncoderProfiledJointStatus>; |
| |
| // Resets all state for when WPILib restarts. |
| void Reset() { catapult_.Reset(); } |
| |
| void Estop() { catapult_.Estop(); } |
| |
| bool zeroed() const { return catapult_.zeroed(); } |
| bool estopped() const { return catapult_.estopped(); } |
| double solve_time() const { return catapult_mpc_.solve_time(); } |
| |
| bool mpc_active() const { return !use_profile_; } |
| |
| // Returns the number of shots taken. |
| int shot_count() const { return shot_count_; } |
| |
| // Returns the estimated position |
| double estimated_position() const { return catapult_.estimated_position(); } |
| |
| // Runs either the MPC or the profiled subsystem depending on if we are |
| // shooting or not. Returns the status. |
| const flatbuffers::Offset< |
| frc971::control_loops::PotAndAbsoluteEncoderProfiledJointStatus> |
| Iterate(const Goal *unsafe_goal, const Position *position, |
| double battery_voltage, double *catapult_voltage, bool fire, |
| flatbuffers::FlatBufferBuilder *fbb); |
| |
| private: |
| // TODO(austin): Prototype is just an encoder. Catapult has both an encoder |
| // and pot. Switch back once we have a catapult. |
| // PotAndAbsoluteEncoderSubsystem catapult_; |
| PotAndAbsoluteEncoderSubsystem catapult_; |
| |
| catapult::CatapultController catapult_mpc_; |
| |
| enum CatapultState { PROFILE, FIRING, RESETTING }; |
| |
| CatapultState catapult_state_ = CatapultState::PROFILE; |
| |
| bool last_firing_ = false; |
| bool use_profile_ = true; |
| |
| int shot_count_ = 0; |
| }; |
| |
| } // namespace catapult |
| } // namespace superstructure |
| } // namespace control_loops |
| } // namespace y2022 |
| |
| #endif // Y2022_CONTROL_LOOPS_SUPERSTRUCTURE_CATAPULT_CATAPULT_H_ |