blob: cfe61a078334926707178a8788f024694f61bc08 [file] [log] [blame]
#include "frc971/control_loops/claw/claw.h"
#include <stdio.h>
#include <algorithm>
#include "aos/common/control_loop/control_loops.q.h"
#include "aos/common/logging/logging.h"
#include "frc971/constants.h"
#include "frc971/control_loops/claw/claw_motor_plant.h"
// Zeroing plan.
// There are 2 types of zeros. Enabled and disabled ones.
// Disabled ones are only valid during auto mode, and can be used to speed up
// the enabled zero process. We need to re-zero during teleop in case the auto
// zero was poor and causes us to miss all our shots.
//
// We need to be able to zero manually while disabled by moving the joint over
// the zeros.
// Zero on the down edge when disabled (gravity in the direction of motion)
//
// When enabled, zero on the up edge (gravity opposing the direction of motion)
// The enabled sequence needs to work as follows. We can crash the claw if we
// bring them too close to each other or too far from each other. The only safe
// thing to do is to move them in unison.
//
// Start by moving them both towards the front of the bot to either find either
// the middle hall effect on either jaw, or the front hall effect on the bottom
// jaw. Any edge that isn't the desired edge will provide an approximate edge
// location that can be used for the fine tuning step.
// Once an edge is found on the front claw, move back the other way with both
// claws until an edge is found for the other claw.
// Now that we have an approximate zero, we can robustify the limits to keep
// both claws safe. Then, we can move both claws to a position that is the
// correct side of the zero and go zero.
// Valid region plan.
// Difference between the arms has a range, and the values of each arm has a range.
// If a claw runs up against a static limit, don't let the goal change outside
// the limit.
// If a claw runs up against a movable limit, move both claws outwards to get
// out of the condition.
namespace frc971 {
namespace control_loops {
void ClawLimitedLoop::CapU() {
uncapped_average_voltage_ = U(0, 0) + U(1, 0) / 2.0;
if (is_zeroing_) {
const frc971::constants::Values &values = constants::GetValues();
if (uncapped_average_voltage_ > values.claw.max_zeroing_voltage) {
const double difference =
uncapped_average_voltage_ - values.claw.max_zeroing_voltage;
U(0, 0) -= difference;
U(1, 0) -= difference;
} else if (uncapped_average_voltage_ < -values.claw.max_zeroing_voltage) {
const double difference =
-uncapped_average_voltage_ - values.claw.max_zeroing_voltage;
U(0, 0) += difference;
U(1, 0) += difference;
}
}
double max_value =
::std::max(::std::abs(U(0, 0)), ::std::abs(U(1, 0) + U(0, 0)));
if (max_value > 12.0) {
LOG(DEBUG, "Capping U because max is %f\n", max_value);
U = U * 12.0 / max_value;
LOG(DEBUG, "Capping U is now %f %f\n", U(0, 0), U(1, 0));
}
}
ClawMotor::ClawMotor(control_loops::ClawGroup *my_claw)
: aos::control_loops::ControlLoop<control_loops::ClawGroup>(my_claw),
has_top_claw_goal_(false),
top_claw_goal_(0.0),
top_claw_(this),
has_bottom_claw_goal_(false),
bottom_claw_goal_(0.0),
bottom_claw_(this),
claw_(MakeClawLoop()),
was_enabled_(false),
doing_calibration_fine_tune_(false),
capped_goal_(false) {}
const int ZeroedStateFeedbackLoop::kZeroingMaxVoltage;
bool ZeroedStateFeedbackLoop::GetPositionOfEdge(
const constants::Values::Claws::Claw &claw_values, double *edge_encoder,
double *edge_angle) {
// TODO(austin): Validate that the hall effect edge makes sense.
// We must now be on the side of the edge that we expect to be, and the
// encoder must have been on either side of the edge before and after.
// TODO(austin): Compute the last off range min and max and compare the edge
// value to the middle of the range. This will be quite a bit more reliable.
if (front_hall_effect_posedge_count_changed()) {
if (posedge_value_ - last_encoder() < 0) {
*edge_angle = claw_values.front.upper_angle;
LOG(INFO, "%s Posedge front upper edge -> %f\n", name_, *edge_angle);
} else {
*edge_angle = claw_values.front.lower_angle;
LOG(INFO, "%s Posedge front lower edge -> %f\n", name_, *edge_angle);
}
*edge_encoder = posedge_value_;
return true;
}
if (front_hall_effect_negedge_count_changed()) {
if (negedge_value_ - last_encoder() > 0) {
*edge_angle = claw_values.front.upper_angle;
LOG(INFO, "%s Negedge front upper edge -> %f\n", name_, *edge_angle);
} else {
*edge_angle = claw_values.front.lower_angle;
LOG(INFO, "%s Negedge front lower edge -> %f\n", name_, *edge_angle);
}
*edge_encoder = negedge_value_;
return true;
}
if (calibration_hall_effect_posedge_count_changed()) {
if (posedge_value_ - last_encoder() < 0) {
*edge_angle = claw_values.calibration.upper_angle;
LOG(INFO, "%s Posedge calibration upper edge -> %f\n", name_,
*edge_angle);
} else {
*edge_angle = claw_values.calibration.lower_angle;
LOG(INFO, "%s Posedge calibration lower edge -> %f\n", name_,
*edge_angle);
}
*edge_encoder = posedge_value_;
return true;
}
if (calibration_hall_effect_negedge_count_changed()) {
if (negedge_value_ - last_encoder() > 0) {
*edge_angle = claw_values.calibration.upper_angle;
LOG(INFO, "%s Negedge calibration upper edge -> %f\n", name_, *edge_angle);
} else {
*edge_angle = claw_values.calibration.lower_angle;
LOG(INFO, "%s Negedge calibration lower edge -> %f\n", name_, *edge_angle);
}
*edge_encoder = negedge_value_;
return true;
}
if (back_hall_effect_posedge_count_changed()) {
if (posedge_value_ - last_encoder() < 0) {
*edge_angle = claw_values.back.upper_angle;
LOG(INFO, "%s Posedge back upper edge -> %f\n", name_, *edge_angle);
} else {
*edge_angle = claw_values.back.lower_angle;
LOG(INFO, "%s Posedge back lower edge -> %f\n", name_, *edge_angle);
}
*edge_encoder = posedge_value_;
return true;
}
if (back_hall_effect_negedge_count_changed()) {
if (negedge_value_ - last_encoder() > 0) {
*edge_angle = claw_values.back.upper_angle;
LOG(INFO, "%s Negedge back upper edge -> %f\n", name_, *edge_angle);
} else {
*edge_angle = claw_values.back.lower_angle;
LOG(INFO, "%s Negedge back lower edge -> %f\n", name_, *edge_angle);
}
*edge_encoder = negedge_value_;
return true;
}
return false;
}
void TopZeroedStateFeedbackLoop::SetCalibration(double edge_encoder,
double edge_angle) {
double old_offset = offset_;
offset_ = edge_angle - edge_encoder;
const double doffset = offset_ - old_offset;
motor_->ChangeTopOffset(doffset);
}
void BottomZeroedStateFeedbackLoop::SetCalibration(double edge_encoder,
double edge_angle) {
double old_offset = offset_;
offset_ = edge_angle - edge_encoder;
const double doffset = offset_ - old_offset;
motor_->ChangeBottomOffset(doffset);
}
void ClawMotor::ChangeTopOffset(double doffset) {
claw_.ChangeTopOffset(doffset);
if (has_top_claw_goal_) {
top_claw_goal_ += doffset;
}
}
void ClawMotor::ChangeBottomOffset(double doffset) {
claw_.ChangeBottomOffset(doffset);
if (has_bottom_claw_goal_) {
bottom_claw_goal_ += doffset;
}
}
void ClawLimitedLoop::ChangeTopOffset(double doffset) {
Y_(1, 0) += doffset;
X_hat(1, 0) += doffset;
LOG(INFO, "Changing top offset by %f\n", doffset);
}
void ClawLimitedLoop::ChangeBottomOffset(double doffset) {
Y_(0, 0) += doffset;
X_hat(0, 0) += doffset;
X_hat(1, 0) -= doffset;
LOG(INFO, "Changing bottom offset by %f\n", doffset);
}
// Positive angle is up, and positive power is up.
void ClawMotor::RunIteration(const control_loops::ClawGroup::Goal *goal,
const control_loops::ClawGroup::Position *position,
control_loops::ClawGroup::Output *output,
::aos::control_loops::Status *status) {
constexpr double dt = 0.01;
// Disable the motors now so that all early returns will return with the
// motors disabled.
if (output) {
output->top_claw_voltage = 0;
output->bottom_claw_voltage = 0;
output->intake_voltage = 0;
}
// TODO(austin): Handle the disabled state and the disabled -> enabled
// transition in all of these states.
// TODO(austin): Handle zeroing while disabled correctly (only use a single
// edge and direction when zeroing.)
if (::aos::robot_state.get() == nullptr) {
return;
}
const frc971::constants::Values &values = constants::GetValues();
if (position) {
Eigen::Matrix<double, 2, 1> Y;
Y << position->bottom.position + bottom_claw_.offset(),
position->top.position + top_claw_.offset();
claw_.Correct(Y);
top_claw_.SetPositionValues(position->top);
bottom_claw_.SetPositionValues(position->bottom);
if (!has_top_claw_goal_) {
has_top_claw_goal_ = true;
top_claw_goal_ = top_claw_.absolute_position();
initial_seperation_ =
top_claw_.absolute_position() - bottom_claw_.absolute_position();
}
if (!has_bottom_claw_goal_) {
has_bottom_claw_goal_ = true;
bottom_claw_goal_ = bottom_claw_.absolute_position();
initial_seperation_ =
top_claw_.absolute_position() - bottom_claw_.absolute_position();
}
LOG(DEBUG, "Claw position is (top: %f bottom: %f\n",
top_claw_.absolute_position(), bottom_claw_.absolute_position());
}
bool autonomous = ::aos::robot_state->autonomous;
bool enabled = ::aos::robot_state->enabled;
enum CalibrationMode {
READY,
FINE_TUNE,
UNKNOWN_LOCATION
};
CalibrationMode mode;
if ((top_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED &&
bottom_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED) ||
(autonomous &&
((top_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
top_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION) &&
(bottom_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
bottom_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION)))) {
// Ready to use the claw.
// Limit the goals here.
bottom_claw_goal_ = goal->bottom_angle;
top_claw_goal_ = goal->bottom_angle + goal->seperation_angle;
has_bottom_claw_goal_ = true;
has_top_claw_goal_ = true;
doing_calibration_fine_tune_ = false;
mode = READY;
} else if (top_claw_.zeroing_state() !=
ZeroedStateFeedbackLoop::UNKNOWN_POSITION &&
bottom_claw_.zeroing_state() !=
ZeroedStateFeedbackLoop::UNKNOWN_POSITION) {
// Time to fine tune the zero.
// Limit the goals here.
if (bottom_claw_.zeroing_state() != ZeroedStateFeedbackLoop::CALIBRATED) {
// always get the bottom claw to calibrated first
LOG(DEBUG, "Calibrating the bottom of the claw\n");
if (!doing_calibration_fine_tune_) {
if (::std::abs(bottom_absolute_position() -
values.claw.start_fine_tune_pos) <
values.claw.claw_unimportant_epsilon) {
doing_calibration_fine_tune_ = true;
bottom_claw_goal_ += values.claw.claw_zeroing_speed * dt;
LOG(DEBUG, "Ready to fine tune the bottom\n");
} else {
// send bottom to zeroing start
bottom_claw_goal_ = values.claw.start_fine_tune_pos;
LOG(DEBUG, "Going to the start position for the bottom\n");
}
} else {
bottom_claw_goal_ += values.claw.claw_zeroing_speed * dt;
if (top_claw_.front_hall_effect() || top_claw_.back_hall_effect() ||
bottom_claw_.front_hall_effect() ||
bottom_claw_.back_hall_effect()) {
// We shouldn't hit a limit, but if we do, go back to the zeroing
// point and try again.
doing_calibration_fine_tune_ = false;
bottom_claw_goal_ = values.claw.start_fine_tune_pos;
LOG(DEBUG, "Found a limit, starting over.\n");
}
if (bottom_claw_.calibration_hall_effect()) {
if (bottom_claw_.calibration_hall_effect_posedge_count_changed() &&
position) {
// do calibration
bottom_claw_.SetCalibration(
position->bottom.posedge_value,
values.claw.lower_claw.calibration.lower_angle);
bottom_claw_.set_zeroing_state(ZeroedStateFeedbackLoop::CALIBRATED);
// calibrated so we are done fine tuning bottom
doing_calibration_fine_tune_ = false;
LOG(DEBUG, "Calibrated the bottom correctly!\n");
} else {
doing_calibration_fine_tune_ = false;
bottom_claw_goal_ = values.claw.start_fine_tune_pos;
}
} else {
LOG(DEBUG, "Fine tuning\n");
}
}
// now set the top claw to track
top_claw_goal_ = bottom_claw_goal_ + values.claw.claw_zeroing_separation;
} else {
// bottom claw must be calibrated, start on the top
if (!doing_calibration_fine_tune_) {
if (::std::abs(top_absolute_position() -
values.claw.start_fine_tune_pos) <
values.claw.claw_unimportant_epsilon) {
doing_calibration_fine_tune_ = true;
top_claw_goal_ += values.claw.claw_zeroing_speed * dt;
LOG(DEBUG, "Ready to fine tune the top\n");
} else {
// send top to zeroing start
top_claw_goal_ = values.claw.start_fine_tune_pos;
LOG(DEBUG, "Going to the start position for the top\n");
}
} else {
top_claw_goal_ += values.claw.claw_zeroing_speed * dt;
if (top_claw_.front_hall_effect() || top_claw_.back_hall_effect() ||
bottom_claw_.front_hall_effect() ||
bottom_claw_.back_hall_effect()) {
// this should not happen, but now we know it won't
doing_calibration_fine_tune_ = false;
top_claw_goal_ = values.claw.start_fine_tune_pos;
LOG(DEBUG, "Found a limit, starting over.\n");
}
if (top_claw_.calibration_hall_effect()) {
if (top_claw_.calibration_hall_effect_posedge_count_changed() &&
position) {
// do calibration
top_claw_.SetCalibration(
position->top.posedge_value,
values.claw.upper_claw.calibration.lower_angle);
top_claw_.set_zeroing_state(ZeroedStateFeedbackLoop::CALIBRATED);
// calinrated so we are done fine tuning top
doing_calibration_fine_tune_ = false;
LOG(DEBUG, "Calibrated the top correctly!\n");
} else {
doing_calibration_fine_tune_ = false;
top_claw_goal_ = values.claw.start_fine_tune_pos;
}
}
}
// now set the bottom claw to track
bottom_claw_goal_ = top_claw_goal_ - values.claw.claw_zeroing_separation;
}
mode = FINE_TUNE;
} else {
doing_calibration_fine_tune_ = false;
if (!was_enabled_ && enabled) {
if (position) {
top_claw_goal_ = position->top.position;
bottom_claw_goal_ = position->bottom.position;
initial_seperation_ =
position->top.position - position->bottom.position;
} else {
has_top_claw_goal_ = false;
has_bottom_claw_goal_ = false;
}
}
// TODO(austin): Limit the goals here.
if ((bottom_claw_.zeroing_state() !=
ZeroedStateFeedbackLoop::UNKNOWN_POSITION ||
bottom_claw_.front_hall_effect() || top_claw_.front_hall_effect()) &&
!top_claw_.back_hall_effect() && !bottom_claw_.back_hall_effect()) {
if (enabled) {
// Time to slowly move back up to find any position to narrow down the
// zero.
top_claw_goal_ += values.claw.claw_zeroing_off_speed * dt;
bottom_claw_goal_ += values.claw.claw_zeroing_off_speed * dt;
// TODO(austin): Goal velocity too!
LOG(DEBUG, "Bottom is known.\n");
}
} else {
// We don't know where either claw is. Slowly start moving down to find
// any hall effect.
if (enabled) {
top_claw_goal_ -= values.claw.claw_zeroing_off_speed * dt;
bottom_claw_goal_ -= values.claw.claw_zeroing_off_speed * dt;
// TODO(austin): Goal velocity too!
LOG(DEBUG, "Both are unknown.\n");
}
}
if (enabled) {
top_claw_.SetCalibrationOnEdge(
values.claw.upper_claw, ZeroedStateFeedbackLoop::APPROXIMATE_CALIBRATION);
bottom_claw_.SetCalibrationOnEdge(
values.claw.lower_claw, ZeroedStateFeedbackLoop::APPROXIMATE_CALIBRATION);
} else {
top_claw_.SetCalibrationOnEdge(
values.claw.upper_claw, ZeroedStateFeedbackLoop::DISABLED_CALIBRATION);
bottom_claw_.SetCalibrationOnEdge(
values.claw.lower_claw, ZeroedStateFeedbackLoop::DISABLED_CALIBRATION);
}
mode = UNKNOWN_LOCATION;
}
// TODO(austin): Handle disabled properly everwhere... Restart and all that
// jazz.
if (has_top_claw_goal_ && has_bottom_claw_goal_) {
claw_.R << bottom_claw_goal_, top_claw_goal_ - bottom_claw_goal_, 0, 0;
double separation = -971;
if (position != nullptr) {
separation = position->top.position - position->bottom.position;
}
LOG(DEBUG, "Goal is %f (bottom) %f, separation is %f\n", claw_.R(0, 0),
claw_.R(1, 0), separation);
// Only cap power when one of the halves of the claw is unknown.
claw_.set_is_zeroing(mode == UNKNOWN_LOCATION);
claw_.Update(output == nullptr);
} else {
claw_.Update(true);
}
capped_goal_ = false;
switch (mode) {
case READY:
break;
case FINE_TUNE:
break;
case UNKNOWN_LOCATION: {
if (claw_.uncapped_average_voltage() > values.claw.max_zeroing_voltage) {
double dx = (claw_.uncapped_average_voltage() -
values.claw.max_zeroing_voltage) /
claw_.K(0, 0);
bottom_claw_goal_ -= dx;
top_claw_goal_ -= dx;
capped_goal_ = true;
LOG(DEBUG, "Moving the goal by %f to prevent windup\n", dx);
} else if (claw_.uncapped_average_voltage() <
-values.claw.max_zeroing_voltage) {
double dx = (claw_.uncapped_average_voltage() +
values.claw.max_zeroing_voltage) /
claw_.K(0, 0);
bottom_claw_goal_ -= dx;
top_claw_goal_ -= dx;
capped_goal_ = true;
LOG(DEBUG, "Moving the goal by %f to prevent windup\n", dx);
}
} break;
}
if (output) {
output->top_claw_voltage = claw_.U(1, 0) + claw_.U(0, 0);
output->bottom_claw_voltage = claw_.U(0, 0);
}
status->done = false;
was_enabled_ = ::aos::robot_state->enabled;
}
} // namespace control_loops
} // namespace frc971