| #!/usr/bin/python |
| |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| from frc971.control_loops.python import polytope |
| from y2016.control_loops.python import polydrivetrain |
| import numpy |
| import sys |
| import matplotlib |
| from matplotlib import pylab |
| import gflags |
| import glog |
| |
| FLAGS = gflags.FLAGS |
| |
| try: |
| gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| except gflags.DuplicateFlagError: |
| pass |
| |
| class Intake(control_loop.ControlLoop): |
| def __init__(self, name="Intake", mass=None): |
| super(Intake, self).__init__(name) |
| # TODO(constants): Update all of these & retune poles. |
| # Stall Torque in N m |
| self.stall_torque = 0.476 |
| # Stall Current in Amps |
| self.stall_current = 80.730 |
| # Free Speed in RPM |
| self.free_speed = 13906.0 |
| # Free Current in Amps |
| self.free_current = 5.820 |
| # Mass of the intake |
| if mass is None: |
| self.mass = 5.0 |
| else: |
| self.mass = mass |
| |
| # Resistance of the motor |
| self.R = 12.0 / self.stall_current |
| # Motor velocity constant |
| self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| (12.0 - self.R * self.free_current)) |
| # Torque constant |
| self.Kt = self.stall_torque / self.stall_current |
| # Gear ratio |
| self.G = (56.0 / 12.0) * (54.0 / 14.0) * (64.0 / 14.0) * (72.0 / 18.0) |
| # Intake length |
| self.r = 18 * 0.0254 |
| |
| self.J = self.r * self.mass |
| |
| # Control loop time step |
| self.dt = 0.005 |
| |
| # State is [position, velocity] |
| # Input is [Voltage] |
| |
| C1 = self.G * self.G * self.Kt / (self.R * self.J * self.Kv) |
| C2 = self.Kt * self.G / (self.J * self.R) |
| |
| self.A_continuous = numpy.matrix( |
| [[0, 1], |
| [0, -C1]]) |
| |
| # Start with the unmodified input |
| self.B_continuous = numpy.matrix( |
| [[0], |
| [C2]]) |
| |
| self.C = numpy.matrix([[1, 0]]) |
| self.D = numpy.matrix([[0]]) |
| |
| self.A, self.B = self.ContinuousToDiscrete( |
| self.A_continuous, self.B_continuous, self.dt) |
| |
| controllability = controls.ctrb(self.A, self.B) |
| |
| print "Free speed is", self.free_speed * numpy.pi * 2.0 / 60.0 / self.G |
| |
| q_pos = 0.15 |
| q_vel = 2.5 |
| self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0], |
| [0.0, (1.0 / (q_vel ** 2.0))]]) |
| |
| self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]]) |
| self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| |
| print 'K', self.K |
| print 'Poles are', numpy.linalg.eig(self.A - self.B * self.K)[0] |
| |
| self.rpl = 0.30 |
| self.ipl = 0.10 |
| self.PlaceObserverPoles([self.rpl + 1j * self.ipl, |
| self.rpl - 1j * self.ipl]) |
| |
| print 'L is', self.L |
| |
| q_pos = 0.05 |
| q_vel = 2.65 |
| self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0], |
| [0.0, (q_vel ** 2.0)]]) |
| |
| r_volts = 0.025 |
| self.R = numpy.matrix([[(r_volts ** 2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman( |
| A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| |
| print 'Kal', self.KalmanGain |
| self.L = self.A * self.KalmanGain |
| print 'KalL is', self.L |
| |
| # The box formed by U_min and U_max must encompass all possible values, |
| # or else Austin's code gets angry. |
| self.U_max = numpy.matrix([[12.0]]) |
| self.U_min = numpy.matrix([[-12.0]]) |
| |
| self.InitializeState() |
| |
| class IntegralIntake(Intake): |
| def __init__(self, name="IntegralIntake", mass=None): |
| super(IntegralIntake, self).__init__(name=name, mass=mass) |
| |
| self.A_continuous_unaugmented = self.A_continuous |
| self.B_continuous_unaugmented = self.B_continuous |
| |
| self.A_continuous = numpy.matrix(numpy.zeros((3, 3))) |
| self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented |
| self.A_continuous[0:2, 2] = self.B_continuous_unaugmented |
| |
| self.B_continuous = numpy.matrix(numpy.zeros((3, 1))) |
| self.B_continuous[0:2, 0] = self.B_continuous_unaugmented |
| |
| self.C_unaugmented = self.C |
| self.C = numpy.matrix(numpy.zeros((1, 3))) |
| self.C[0:1, 0:2] = self.C_unaugmented |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt) |
| |
| q_pos = 0.08 |
| q_vel = 4.00 |
| q_voltage = 6.0 |
| self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0], |
| [0.0, (q_vel ** 2.0), 0.0], |
| [0.0, 0.0, (q_voltage ** 2.0)]]) |
| |
| r_pos = 0.05 |
| self.R = numpy.matrix([[(r_pos ** 2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman( |
| A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R) |
| self.L = self.A * self.KalmanGain |
| |
| self.K_unaugmented = self.K |
| self.K = numpy.matrix(numpy.zeros((1, 3))) |
| self.K[0, 0:2] = self.K_unaugmented |
| self.K[0, 2] = 1 |
| |
| self.InitializeState() |
| class ScenarioPlotter(object): |
| def __init__(self): |
| # Various lists for graphing things. |
| self.t = [] |
| self.x = [] |
| self.v = [] |
| self.a = [] |
| self.x_hat = [] |
| self.u = [] |
| |
| def run_test(self, intake, goal, iterations=200, controller_intake=None, |
| observer_intake=None): |
| """Runs the intake plant with an initial condition and goal. |
| |
| Test for whether the goal has been reached and whether the separation |
| goes outside of the initial and goal values by more than |
| max_separation_error. |
| |
| Prints out something for a failure of either condition and returns |
| False if tests fail. |
| Args: |
| intake: intake object to use. |
| goal: goal state. |
| iterations: Number of timesteps to run the model for. |
| controller_intake: Intake object to get K from, or None if we should |
| use intake. |
| observer_intake: Intake object to use for the observer, or None if we should |
| use the actual state. |
| """ |
| |
| if controller_intake is None: |
| controller_intake = intake |
| |
| vbat = 12.0 |
| |
| if self.t: |
| initial_t = self.t[-1] + intake.dt |
| else: |
| initial_t = 0 |
| |
| for i in xrange(iterations): |
| X_hat = intake.X |
| |
| if observer_intake is not None: |
| X_hat = observer_intake.X_hat |
| self.x_hat.append(observer_intake.X_hat[0, 0]) |
| |
| U = controller_intake.K * (goal - X_hat) |
| U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat) |
| self.x.append(intake.X[0, 0]) |
| |
| if self.v: |
| last_v = self.v[-1] |
| else: |
| last_v = 0 |
| |
| self.v.append(intake.X[1, 0]) |
| self.a.append((self.v[-1] - last_v) / intake.dt) |
| |
| if observer_intake is not None: |
| observer_intake.Y = intake.Y |
| observer_intake.CorrectObserver(U) |
| |
| intake.Update(U) |
| |
| if observer_intake is not None: |
| observer_intake.PredictObserver(U) |
| |
| self.t.append(initial_t + i * intake.dt) |
| self.u.append(U[0, 0]) |
| |
| glog.debug('Time: %f', self.t[-1]) |
| |
| def Plot(self): |
| pylab.subplot(3, 1, 1) |
| pylab.plot(self.t, self.x, label='x') |
| pylab.plot(self.t, self.x_hat, label='x_hat') |
| pylab.legend() |
| |
| pylab.subplot(3, 1, 2) |
| pylab.plot(self.t, self.u, label='u') |
| |
| pylab.subplot(3, 1, 3) |
| pylab.plot(self.t, self.a, label='a') |
| |
| pylab.legend() |
| pylab.show() |
| |
| |
| def main(argv): |
| argv = FLAGS(argv) |
| |
| base_mass = 4 |
| load_mass = 0 |
| |
| scenario_plotter = ScenarioPlotter() |
| |
| intake = Intake(mass=base_mass + load_mass) |
| intake_controller = IntegralIntake(mass=base_mass + load_mass) |
| observer_intake = IntegralIntake(mass=base_mass + load_mass) |
| |
| # Test moving the intake with constant separation. |
| initial_X = numpy.matrix([[0.0], [0.0]]) |
| R = numpy.matrix([[1.0], [0.0], [0.0]]) |
| scenario_plotter.run_test(intake, goal=R, controller_intake=intake_controller, |
| observer_intake=observer_intake, iterations=200) |
| |
| if FLAGS.plot: |
| scenario_plotter.Plot() |
| |
| # Write the generated constants out to a file. |
| if len(argv) != 5: |
| glog.fatal('Expected .h file name and .cc file name for the intake and integral intake.') |
| else: |
| namespaces = ['y2016', 'control_loops', 'superstructure'] |
| intake = Intake("Intake") |
| loop_writer = control_loop.ControlLoopWriter('Intake', [intake], |
| namespaces=namespaces) |
| loop_writer.Write(argv[1], argv[2]) |
| |
| integral_intake = IntegralIntake("IntegralIntake", mass=base_mass + load_mass) |
| integral_loop_writer = control_loop.ControlLoopWriter("IntegralIntake", [integral_intake], |
| namespaces=['y2016', 'control_loops', 'superstructure']) |
| integral_loop_writer.Write(argv[3], argv[4]) |
| |
| if __name__ == '__main__': |
| sys.exit(main(sys.argv)) |