blob: a248f80fff1b828d0615bb6500068b92da771638 [file] [log] [blame]
#ifndef AOS_EVENTS_LOGGER_H_
#define AOS_EVENTS_LOGGER_H_
#include <chrono>
#include <deque>
#include <string_view>
#include <tuple>
#include <vector>
#include "Eigen/Dense"
#include "absl/strings/str_cat.h"
#include "absl/types/span.h"
#include "aos/events/event_loop.h"
#include "aos/events/logging/eigen_mpq.h"
#include "aos/events/logging/log_namer.h"
#include "aos/events/logging/logfile_sorting.h"
#include "aos/events/logging/logfile_utils.h"
#include "aos/events/logging/logger_generated.h"
#include "aos/events/logging/uuid.h"
#include "aos/events/simulated_event_loop.h"
#include "aos/network/message_bridge_server_generated.h"
#include "aos/network/remote_message_generated.h"
#include "aos/network/timestamp_filter.h"
#include "aos/time/time.h"
#include "flatbuffers/flatbuffers.h"
#include "third_party/gmp/gmpxx.h"
namespace aos {
namespace logger {
// Logs all channels available in the event loop to disk every 100 ms.
// Start by logging one message per channel to capture any state and
// configuration that is sent rately on a channel and would affect execution.
class Logger {
public:
// Constructs a logger.
// event_loop: The event loop used to read the messages.
// configuration: When provided, this is the configuration to log, and the
// configuration to use for the channel list to log. If not provided,
// this becomes the configuration from the event loop.
// should_log: When provided, a filter for channels to log. If not provided,
// all available channels are logged.
Logger(EventLoop *event_loop)
: Logger(event_loop, event_loop->configuration()) {}
Logger(EventLoop *event_loop, const Configuration *configuration)
: Logger(event_loop, configuration,
[](const Channel *) { return true; }) {}
Logger(EventLoop *event_loop, const Configuration *configuration,
std::function<bool(const Channel *)> should_log);
~Logger();
// Overrides the name in the log file header.
void set_name(std::string_view name) { name_ = name; }
// Sets the callback to run after each period of data is logged. Defaults to
// doing nothing.
//
// This callback may safely do things like call Rotate().
void set_on_logged_period(std::function<void()> on_logged_period) {
on_logged_period_ = std::move(on_logged_period);
}
// Sets the period between polling the data. Defaults to 100ms.
//
// Changing this while a set of files is being written may result in
// unreadable files.
void set_polling_period(std::chrono::nanoseconds polling_period) {
polling_period_ = polling_period;
}
std::string_view log_start_uuid() const { return log_start_uuid_; }
UUID logger_instance_uuid() const { return logger_instance_uuid_; }
// The maximum time for a single fetch which returned a message, or 0 if none
// of those have happened.
std::chrono::nanoseconds max_message_fetch_time() const {
return max_message_fetch_time_;
}
// The channel for that longest fetch which returned a message, or -1 if none
// of those have happened.
int max_message_fetch_time_channel() const {
return max_message_fetch_time_channel_;
}
// The size of the message returned by that longest fetch, or -1 if none of
// those have happened.
int max_message_fetch_time_size() const {
return max_message_fetch_time_size_;
}
// The total time spent fetching messages.
std::chrono::nanoseconds total_message_fetch_time() const {
return total_message_fetch_time_;
}
// The total number of fetch calls which returned messages.
int total_message_fetch_count() const { return total_message_fetch_count_; }
// The total number of bytes fetched.
int64_t total_message_fetch_bytes() const {
return total_message_fetch_bytes_;
}
// The total time spent in fetches which did not return a message.
std::chrono::nanoseconds total_nop_fetch_time() const {
return total_nop_fetch_time_;
}
// The total number of fetches which did not return a message.
int total_nop_fetch_count() const { return total_nop_fetch_count_; }
// The maximum time for a single copy, or 0 if none of those have happened.
std::chrono::nanoseconds max_copy_time() const { return max_copy_time_; }
// The channel for that longest copy, or -1 if none of those have happened.
int max_copy_time_channel() const { return max_copy_time_channel_; }
// The size of the message for that longest copy, or -1 if none of those have
// happened.
int max_copy_time_size() const { return max_copy_time_size_; }
// The total time spent copying messages.
std::chrono::nanoseconds total_copy_time() const { return total_copy_time_; }
// The total number of messages copied.
int total_copy_count() const { return total_copy_count_; }
// The total number of bytes copied.
int64_t total_copy_bytes() const { return total_copy_bytes_; }
void ResetStatisics();
// Rotates the log file(s), triggering new part files to be written for each
// log file.
void Rotate();
// Starts logging to files with the given naming scheme.
//
// log_start_uuid may be used to tie this log event to other log events across
// multiple nodes. The default (empty string) indicates there isn't one
// available.
void StartLogging(std::unique_ptr<LogNamer> log_namer,
std::string_view log_start_uuid = "");
// Stops logging. Ensures any messages through end_time make it into the log.
//
// If you want to stop ASAP, pass min_time to avoid reading any more messages.
//
// Returns the LogNamer in case the caller wants to do anything else with it
// before destroying it.
std::unique_ptr<LogNamer> StopLogging(
aos::monotonic_clock::time_point end_time);
// Returns whether a log is currently being written.
bool is_started() const { return static_cast<bool>(log_namer_); }
// Shortcut to call StartLogging with a LocalLogNamer when event processing
// starts.
void StartLoggingLocalNamerOnRun(std::string base_name) {
event_loop_->OnRun([this, base_name]() {
StartLogging(
std::make_unique<LocalLogNamer>(base_name, event_loop_->node()));
});
}
private:
// Structure to track both a fetcher, and if the data fetched has been
// written. We may want to delay writing data to disk so that we don't let
// data get too far out of order when written to disk so we can avoid making
// it too hard to sort when reading.
struct FetcherStruct {
std::unique_ptr<RawFetcher> fetcher;
bool written = false;
// Channel index to log to.
int channel_index = -1;
const Channel *channel = nullptr;
const Node *timestamp_node = nullptr;
LogType log_type = LogType::kLogMessage;
// We fill out the metadata at construction, but the actual writers have to
// be updated each time we start logging. To avoid duplicating the complex
// logic determining whether each writer should be initialized, we just
// stash the answer in separate member variables.
bool wants_writer = false;
DetachedBufferWriter *writer = nullptr;
bool wants_timestamp_writer = false;
DetachedBufferWriter *timestamp_writer = nullptr;
bool wants_contents_writer = false;
DetachedBufferWriter *contents_writer = nullptr;
int node_index = 0;
};
// Vector mapping from the channel index from the event loop to the logged
// channel index.
std::vector<int> event_loop_to_logged_channel_index_;
struct NodeState {
aos::monotonic_clock::time_point monotonic_start_time =
aos::monotonic_clock::min_time;
aos::realtime_clock::time_point realtime_start_time =
aos::realtime_clock::min_time;
aos::SizePrefixedFlatbufferDetachedBuffer<LogFileHeader> log_file_header =
aos::SizePrefixedFlatbufferDetachedBuffer<LogFileHeader>::Empty();
};
void WriteHeader();
aos::SizePrefixedFlatbufferDetachedBuffer<LogFileHeader> MakeHeader(
const Node *node);
bool MaybeUpdateTimestamp(
const Node *node, int node_index,
aos::monotonic_clock::time_point monotonic_start_time,
aos::realtime_clock::time_point realtime_start_time);
void DoLogData(const monotonic_clock::time_point end_time);
void WriteMissingTimestamps();
// Fetches from each channel until all the data is logged.
void LogUntil(monotonic_clock::time_point t);
void RecordFetchResult(aos::monotonic_clock::time_point start,
aos::monotonic_clock::time_point end, bool got_new,
FetcherStruct *fetcher);
void RecordCreateMessageTime(aos::monotonic_clock::time_point start,
aos::monotonic_clock::time_point end,
FetcherStruct *fetcher);
// Sets the start time for a specific node.
void SetStartTime(size_t node_index,
aos::monotonic_clock::time_point monotonic_start_time,
aos::realtime_clock::time_point realtime_start_time);
EventLoop *const event_loop_;
// The configuration to place at the top of the log file.
const Configuration *const configuration_;
UUID log_event_uuid_ = UUID::Zero();
const UUID logger_instance_uuid_ = UUID::Random();
std::unique_ptr<LogNamer> log_namer_;
// Empty indicates there isn't one.
std::string log_start_uuid_;
const std::string boot_uuid_;
// Name to save in the log file. Defaults to hostname.
std::string name_;
std::function<void()> on_logged_period_ = []() {};
std::chrono::nanoseconds max_message_fetch_time_ =
std::chrono::nanoseconds::zero();
int max_message_fetch_time_channel_ = -1;
int max_message_fetch_time_size_ = -1;
std::chrono::nanoseconds total_message_fetch_time_ =
std::chrono::nanoseconds::zero();
int total_message_fetch_count_ = 0;
int64_t total_message_fetch_bytes_ = 0;
std::chrono::nanoseconds total_nop_fetch_time_ =
std::chrono::nanoseconds::zero();
int total_nop_fetch_count_ = 0;
std::chrono::nanoseconds max_copy_time_ = std::chrono::nanoseconds::zero();
int max_copy_time_channel_ = -1;
int max_copy_time_size_ = -1;
std::chrono::nanoseconds total_copy_time_ = std::chrono::nanoseconds::zero();
int total_copy_count_ = 0;
int64_t total_copy_bytes_ = 0;
std::vector<FetcherStruct> fetchers_;
TimerHandler *timer_handler_;
// Period to poll the channels.
std::chrono::nanoseconds polling_period_ = std::chrono::milliseconds(100);
// Last time that data was written for all channels to disk.
monotonic_clock::time_point last_synchronized_time_;
// Max size that the header has consumed. This much extra data will be
// reserved in the builder to avoid reallocating.
size_t max_header_size_ = 0;
// Fetcher for all the statistics from all the nodes.
aos::Fetcher<message_bridge::ServerStatistics> server_statistics_fetcher_;
std::vector<NodeState> node_state_;
};
std::vector<std::vector<std::string>> ToLogReaderVector(
const std::vector<LogFile> &log_files);
// We end up with one of the following 3 log file types.
//
// Single node logged as the source node.
// -> Replayed just on the source node.
//
// Forwarding timestamps only logged from the perspective of the destination
// node.
// -> Matched with data on source node and logged.
//
// Forwarding timestamps with data logged as the destination node.
// -> Replayed just as the destination
// -> Replayed as the source (Much harder, ordering is not defined)
//
// Duplicate data logged. -> CHECK that it matches and explode otherwise.
//
// This can be boiled down to a set of constraints and tools.
//
// 1) Forwarding timestamps and data need to be logged separately.
// 2) Any forwarded data logged on the destination node needs to be logged
// separately such that it can be sorted.
//
// 1) Log reader needs to be able to sort a list of log files.
// 2) Log reader needs to be able to merge sorted lists of log files.
// 3) Log reader needs to be able to match timestamps with messages.
//
// We also need to be able to generate multiple views of a log file depending on
// the target.
// Replays all the channels in the logfile to the event loop.
class LogReader {
public:
// If you want to supply a new configuration that will be used for replay
// (e.g., to change message rates, or to populate an updated schema), then
// pass it in here. It must provide all the channels that the original logged
// config did.
//
// The single file constructor calls SortParts internally.
LogReader(std::string_view filename,
const Configuration *replay_configuration = nullptr);
LogReader(std::vector<LogFile> log_files,
const Configuration *replay_configuration = nullptr);
~LogReader();
// Registers all the callbacks to send the log file data out on an event loop
// created in event_loop_factory. This also updates time to be at the start
// of the log file by running until the log file starts.
// Note: the configuration used in the factory should be configuration()
// below, but can be anything as long as the locations needed to send
// everything are available.
void Register(SimulatedEventLoopFactory *event_loop_factory);
// Creates an SimulatedEventLoopFactory accessible via event_loop_factory(),
// and then calls Register.
void Register();
// Registers callbacks for all the events after the log file starts. This is
// only useful when replaying live.
void Register(EventLoop *event_loop);
// Unregisters the senders. You only need to call this if you separately
// supplied an event loop or event loop factory and the lifetimes are such
// that they need to be explicitly destroyed before the LogReader destructor
// gets called.
void Deregister();
// Returns the configuration being used for replay from the log file.
// Note that this may be different from the configuration actually used for
// handling events. You should generally only use this to create a
// SimulatedEventLoopFactory, and then get the configuration from there for
// everything else.
const Configuration *logged_configuration() const;
// Returns the configuration being used for replay from the log file.
// Note that this may be different from the configuration actually used for
// handling events. You should generally only use this to create a
// SimulatedEventLoopFactory, and then get the configuration from there for
// everything else.
// The pointer is invalidated whenever RemapLoggedChannel is called.
const Configuration *configuration() const;
// Returns the nodes that this log file was created on. This is a list of
// pointers to a node in the nodes() list inside configuration(). The
// pointers here are invalidated whenever RemapLoggedChannel is called.
std::vector<const Node *> Nodes() const;
// Returns the starting timestamp for the log file.
monotonic_clock::time_point monotonic_start_time(
const Node *node = nullptr) const;
realtime_clock::time_point realtime_start_time(
const Node *node = nullptr) const;
// Causes the logger to publish the provided channel on a different name so
// that replayed applications can publish on the proper channel name without
// interference. This operates on raw channel names, without any node or
// application specific mappings.
void RemapLoggedChannel(std::string_view name, std::string_view type,
std::string_view add_prefix = "/original",
std::string_view new_type = "");
template <typename T>
void RemapLoggedChannel(std::string_view name,
std::string_view add_prefix = "/original",
std::string_view new_type = "") {
RemapLoggedChannel(name, T::GetFullyQualifiedName(), add_prefix, new_type);
}
// Remaps the provided channel, though this respects node mappings, and
// preserves them too. This makes it so if /aos -> /pi1/aos on one node,
// /original/aos -> /original/pi1/aos on the same node after renaming, just
// like you would hope. If new_type is not empty, the new channel will use
// the provided type instead. This allows for renaming messages.
//
// TODO(austin): If you have 2 nodes remapping something to the same channel,
// this doesn't handle that. No use cases exist yet for that, so it isn't
// being done yet.
void RemapLoggedChannel(std::string_view name, std::string_view type,
const Node *node,
std::string_view add_prefix = "/original",
std::string_view new_type = "");
template <typename T>
void RemapLoggedChannel(std::string_view name, const Node *node,
std::string_view add_prefix = "/original",
std::string_view new_type = "") {
RemapLoggedChannel(name, T::GetFullyQualifiedName(), node, add_prefix,
new_type);
}
template <typename T>
bool HasChannel(std::string_view name, const Node *node = nullptr) {
return configuration::GetChannel(log_file_header()->configuration(), name,
T::GetFullyQualifiedName(), "", node,
true) != nullptr;
}
SimulatedEventLoopFactory *event_loop_factory() {
return event_loop_factory_;
}
const LogFileHeader *log_file_header() const {
return &log_file_header_.message();
}
std::string_view name() const {
return log_file_header()->name()->string_view();
}
private:
const Channel *RemapChannel(const EventLoop *event_loop,
const Channel *channel);
// Queues at least max_out_of_order_duration_ messages into channels_.
void QueueMessages();
// Handle constructing a configuration with all the additional remapped
// channels from calls to RemapLoggedChannel.
void MakeRemappedConfig();
// Returns the number of nodes.
size_t nodes_count() const {
return !configuration::MultiNode(logged_configuration())
? 1u
: logged_configuration()->nodes()->size();
}
const std::vector<LogFile> log_files_;
// This is *a* log file header used to provide the logged config. The rest of
// the header is likely distracting.
SizePrefixedFlatbufferVector<LogFileHeader> log_file_header_;
// Returns [ta; tb; ...] = tuple[0] * t + tuple[1]
std::tuple<Eigen::Matrix<double, Eigen::Dynamic, 1>,
Eigen::Matrix<double, Eigen::Dynamic, 1>>
SolveOffsets();
void LogFit(std::string_view prefix);
// State per node.
class State {
public:
State(std::unique_ptr<TimestampMapper> timestamp_mapper);
// Connects up the timestamp mappers.
void AddPeer(State *peer);
// Returns the timestamps, channel_index, and message from a channel.
// update_time (will be) set to true when popping this message causes the
// filter to change the time offset estimation function.
TimestampedMessage PopOldest(bool *update_time);
// Returns the monotonic time of the oldest message.
monotonic_clock::time_point OldestMessageTime() const;
// Primes the queues inside State. Should be called before calling
// OldestMessageTime.
void SeedSortedMessages();
// Returns the starting time for this node.
monotonic_clock::time_point monotonic_start_time() const {
return timestamp_mapper_ ? timestamp_mapper_->monotonic_start_time()
: monotonic_clock::min_time;
}
realtime_clock::time_point realtime_start_time() const {
return timestamp_mapper_ ? timestamp_mapper_->realtime_start_time()
: realtime_clock::min_time;
}
// Sets the node event loop factory for replaying into a
// SimulatedEventLoopFactory. Returns the EventLoop to use.
EventLoop *SetNodeEventLoopFactory(
NodeEventLoopFactory *node_event_loop_factory);
// Sets and gets the event loop to use.
void set_event_loop(EventLoop *event_loop) { event_loop_ = event_loop; }
EventLoop *event_loop() { return event_loop_; }
// Sets the current realtime offset from the monotonic clock for this node
// (if we are on a simulated event loop).
void SetRealtimeOffset(monotonic_clock::time_point monotonic_time,
realtime_clock::time_point realtime_time) {
if (node_event_loop_factory_ != nullptr) {
node_event_loop_factory_->SetRealtimeOffset(monotonic_time,
realtime_time);
}
}
// Returns the MessageHeader sender to log delivery timestamps to for the
// provided remote node.
aos::Sender<message_bridge::RemoteMessage> *RemoteTimestampSender(
const Node *delivered_node);
// Converts a timestamp from the monotonic clock on this node to the
// distributed clock.
distributed_clock::time_point ToDistributedClock(
monotonic_clock::time_point time) {
return node_event_loop_factory_->ToDistributedClock(time);
}
monotonic_clock::time_point FromDistributedClock(
distributed_clock::time_point time) {
return node_event_loop_factory_->FromDistributedClock(time);
}
// Sets the offset (and slope) from the distributed clock.
void SetDistributedOffset(std::chrono::nanoseconds distributed_offset,
double distributed_slope) {
node_event_loop_factory_->SetDistributedOffset(distributed_offset,
distributed_slope);
}
// Returns the current time on the remote node which sends messages on
// channel_index.
monotonic_clock::time_point monotonic_remote_now(size_t channel_index) {
return channel_source_state_[channel_index]
->node_event_loop_factory_->monotonic_now();
}
distributed_clock::time_point RemoteToDistributedClock(
size_t channel_index, monotonic_clock::time_point time) {
return channel_source_state_[channel_index]
->node_event_loop_factory_->ToDistributedClock(time);
}
const Node *remote_node(size_t channel_index) {
return channel_source_state_[channel_index]
->node_event_loop_factory_->node();
}
monotonic_clock::time_point monotonic_now() {
return node_event_loop_factory_->monotonic_now();
}
// Sets the number of channels.
void SetChannelCount(size_t count);
// Sets the sender, filter, and target factory for a channel.
void SetChannel(
size_t logged_channel_index, size_t factory_channel_index,
std::unique_ptr<RawSender> sender,
message_bridge::NoncausalOffsetEstimator *filter,
aos::Sender<message_bridge::RemoteMessage> *remote_timestamp_sender,
State *source_state);
// Returns if we have read all the messages from all the logs.
bool at_end() const {
return timestamp_mapper_ ? timestamp_mapper_->Front() == nullptr : true;
}
// Unregisters everything so we can destory the event loop.
void Deregister();
// Sets the current TimerHandle for the replay callback.
void set_timer_handler(TimerHandler *timer_handler) {
timer_handler_ = timer_handler;
}
// Sets the next wakeup time on the replay callback.
void Setup(monotonic_clock::time_point next_time) {
timer_handler_->Setup(next_time);
}
// Sends a buffer on the provided channel index.
bool Send(const TimestampedMessage &timestamped_message);
// Returns a debug string for the channel merger.
std::string DebugString() const {
std::stringstream messages;
size_t i = 0;
for (const auto &message : sorted_messages_) {
if (i < 7 || i + 7 > sorted_messages_.size()) {
messages << "sorted_messages[" << i
<< "]: " << std::get<0>(message).monotonic_event_time << " "
<< configuration::StrippedChannelToString(
event_loop_->configuration()->channels()->Get(
std::get<0>(message).channel_index))
<< "\n";
} else if (i == 7) {
messages << "...\n";
}
++i;
}
if (!timestamp_mapper_) {
return messages.str();
}
return messages.str() + timestamp_mapper_->DebugString();
}
private:
// Log file.
std::unique_ptr<TimestampMapper> timestamp_mapper_;
std::deque<std::tuple<TimestampedMessage,
message_bridge::NoncausalOffsetEstimator *>>
sorted_messages_;
// Senders.
std::vector<std::unique_ptr<RawSender>> channels_;
std::vector<aos::Sender<message_bridge::RemoteMessage> *>
remote_timestamp_senders_;
// The mapping from logged channel index to sent channel index. Needed for
// sending out MessageHeaders.
std::vector<int> factory_channel_index_;
struct SentTimestamp {
monotonic_clock::time_point monotonic_event_time =
monotonic_clock::min_time;
realtime_clock::time_point realtime_event_time = realtime_clock::min_time;
uint32_t queue_index = 0xffffffff;
// The queue index that this message *actually* was sent with.
uint32_t actual_queue_index = 0xffffffff;
};
// Stores all the timestamps that have been sent on this channel. This is
// only done for channels which are forwarded and on the node which
// initially sends the message.
//
// TODO(austin): This whole concept is a hack. We should be able to
// associate state with the message as it gets sorted and recover it.
std::vector<std::unique_ptr<std::vector<SentTimestamp>>> queue_index_map_;
// Factory (if we are in sim) that this loop was created on.
NodeEventLoopFactory *node_event_loop_factory_ = nullptr;
std::unique_ptr<EventLoop> event_loop_unique_ptr_;
// Event loop.
EventLoop *event_loop_ = nullptr;
// And timer used to send messages.
TimerHandler *timer_handler_;
// Filters (or nullptr if it isn't a forwarded channel) for each channel.
// This corresponds to the object which is shared among all the channels
// going between 2 nodes. The second element in the tuple indicates if this
// is the primary direction or not.
std::vector<message_bridge::NoncausalOffsetEstimator *> filters_;
// List of NodeEventLoopFactorys (or nullptr if it isn't a forwarded
// channel) which correspond to the originating node.
std::vector<State *> channel_source_state_;
std::map<const Node *, aos::Sender<message_bridge::RemoteMessage>>
remote_timestamp_senders_map_;
};
// Node index -> State.
std::vector<std::unique_ptr<State>> states_;
// Creates the requested filter if it doesn't exist, regardless of whether
// these nodes can actually communicate directly. The second return value
// reports if this is the primary direction or not.
message_bridge::NoncausalOffsetEstimator *GetFilter(const Node *node_a,
const Node *node_b);
// FILE to write offsets to (if populated).
FILE *offset_fp_ = nullptr;
// Timestamp of the first piece of data used for the horizontal axis on the
// plot.
aos::realtime_clock::time_point first_time_;
// List of filters for a connection. The pointer to the first node will be
// less than the second node.
std::map<std::tuple<const Node *, const Node *>,
std::tuple<message_bridge::NoncausalOffsetEstimator>>
filters_;
// Returns the offset from the monotonic clock for a node to the distributed
// clock. monotonic = distributed * slope() + offset();
double slope(int node_index) const {
CHECK_LT(node_index, time_slope_matrix_.rows())
<< ": Got too high of a node index.";
return time_slope_matrix_(node_index);
}
std::chrono::nanoseconds offset(int node_index) const {
CHECK_LT(node_index, time_offset_matrix_.rows())
<< ": Got too high of a node index.";
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::duration<double>(time_offset_matrix_(node_index)));
}
// Updates the offset matrix solution and sets the per-node distributed
// offsets in the factory.
void UpdateOffsets();
// We have 2 types of equations to do a least squares regression over to fully
// constrain our time function.
//
// One is simple. The distributed clock is the average of all the clocks.
// (ta + tb + tc + td) / num_nodes = t_distributed
//
// The second is a bit more complicated. Our basic time conversion function
// is:
// tb = ta + (ta * slope + offset)
// We can rewrite this as follows
// tb - (1 + slope) * ta = offset
//
// From here, we have enough equations to solve for t{a,b,c,...} We want to
// take as an input the offsets and slope, and solve for the per-node times as
// a function of the distributed clock.
//
// We need to massage our equations to make this work. If we solve for the
// per-node times at two set distributed clock times, we will be able to
// recreate the linear function (we know it is linear). We can do a similar
// thing by breaking our equation up into:
//
// [1/3 1/3 1/3 ] [ta] [t_distributed]
// [ 1 -1-m1 0 ] [tb] = [oab]
// [ 1 0 -1-m2 ] [tc] [oac]
//
// This solves to:
//
// [ta] [ a00 a01 a02] [t_distributed]
// [tb] = [ a10 a11 a12] * [oab]
// [tc] [ a20 a21 a22] [oac]
//
// and can be split into:
//
// [ta] [ a00 ] [a01 a02]
// [tb] = [ a10 ] * t_distributed + [a11 a12] * [oab]
// [tc] [ a20 ] [a21 a22] [oac]
//
// (map_matrix_ + slope_matrix_) * [ta; tb; tc] = [offset_matrix_];
// offset_matrix_ will be in nanoseconds.
Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> map_matrix_;
Eigen::Matrix<mpq_class, Eigen::Dynamic, Eigen::Dynamic> slope_matrix_;
Eigen::Matrix<mpq_class, Eigen::Dynamic, 1> offset_matrix_;
// Matrix tracking which offsets are valid.
Eigen::Matrix<bool, Eigen::Dynamic, 1> valid_matrix_;
// Matrix tracking the last valid matrix we used to determine connected nodes.
Eigen::Matrix<bool, Eigen::Dynamic, 1> last_valid_matrix_;
size_t cached_valid_node_count_ = 0;
// [ta; tb; tc] = time_slope_matrix_ * t + time_offset_matrix;
// t is in seconds.
Eigen::Matrix<double, Eigen::Dynamic, 1> time_slope_matrix_;
Eigen::Matrix<double, Eigen::Dynamic, 1> time_offset_matrix_;
std::unique_ptr<FlatbufferDetachedBuffer<Configuration>>
remapped_configuration_buffer_;
std::unique_ptr<SimulatedEventLoopFactory> event_loop_factory_unique_ptr_;
SimulatedEventLoopFactory *event_loop_factory_ = nullptr;
// Map of channel indices to new name. The channel index will be an index into
// logged_configuration(), and the string key will be the name of the channel
// to send on instead of the logged channel name.
struct RemappedChannel {
std::string remapped_name;
std::string new_type;
};
std::map<size_t, RemappedChannel> remapped_channels_;
std::vector<MapT> maps_;
// Number of nodes which still have data to send. This is used to figure out
// when to exit.
size_t live_nodes_ = 0;
const Configuration *remapped_configuration_ = nullptr;
const Configuration *replay_configuration_ = nullptr;
// If true, the replay timer will ignore any missing data. This is used
// during startup when we are bootstrapping everything and trying to get to
// the start of all the log files.
bool ignore_missing_data_ = false;
};
} // namespace logger
} // namespace aos
#endif // AOS_EVENTS_LOGGER_H_