blob: 790868e5cef6946926171320121a6da6814196ad [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved. */
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "Encoder.h"
#include "Resource.h"
#include "WPIErrors.h"
#include "LiveWindow/LiveWindow.h"
/**
* Common initialization code for Encoders.
* This code allocates resources for Encoders and is common to all constructors.
*
* The counter will start counting immediately.
*
* @param reverseDirection If true, counts down instead of up (this is all relative)
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
void Encoder::InitEncoder(int channelA, int channelB, bool reverseDirection, EncodingType encodingType)
{
m_table = nullptr;
this->channelA = channelA;
this->channelB = channelB;
m_encodingType = encodingType;
m_encodingScale = encodingType == k4X ? 4
: encodingType == k2X ? 2
: 1;
int32_t index = 0;
m_distancePerPulse = 1.0;
LiveWindow::GetInstance()->AddSensor("Encoder", channelA, this);
if (channelB < channelA) { // Swap ports
int channel = channelB;
channelB = channelA;
channelA = channel;
m_reverseDirection = !reverseDirection;
} else {
m_reverseDirection = reverseDirection;
}
char buffer[50];
int n = sprintf(buffer, "dio/%d/%d", channelA, channelB);
impl = new SimEncoder(buffer);
impl->Start();
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels.
*
* The counter will start counting immediately.
*
* @param aChannel The a channel digital input channel.
* @param bChannel The b channel digital input channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(uint32_t aChannel, uint32_t bChannel, bool reverseDirection, EncodingType encodingType)
{
InitEncoder(aChannel, bChannel, reverseDirection, encodingType);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in the case
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs
* and assume that they already are counted.
*
* The counter will start counting immediately.
*
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
/* TODO: [Not Supported] Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, bool reverseDirection, EncodingType encodingType) :
m_encoder(nullptr),
m_counter(nullptr)
{
m_aSource = aSource;
m_bSource = bSource;
m_allocatedASource = false;
m_allocatedBSource = false;
if (m_aSource == nullptr || m_bSource == nullptr)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}*/
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in the case
* where the digital inputs are shared. The Encoder class will not allocate the digital inputs
* and assume that they already are counted.
*
* The counter will start counting immediately.
*
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are selected then
* a counter object will be used and the returned value will either exactly match the spec'd count
* or be double (2x) the spec'd count.
*/
/*// TODO: [Not Supported] Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, bool reverseDirection, EncodingType encodingType) :
m_encoder(nullptr),
m_counter(nullptr)
{
m_aSource = &aSource;
m_bSource = &bSource;
m_allocatedASource = false;
m_allocatedBSource = false;
InitEncoder(reverseDirection, encodingType);
}*/
/**
* Reset the Encoder distance to zero.
* Resets the current count to zero on the encoder.
*/
void Encoder::Reset()
{
impl->Reset();
}
/**
* Determine if the encoder is stopped.
* Using the MaxPeriod value, a boolean is returned that is true if the encoder is considered
* stopped and false if it is still moving. A stopped encoder is one where the most recent pulse
* width exceeds the MaxPeriod.
* @return True if the encoder is considered stopped.
*/
bool Encoder::GetStopped() const
{
throw "Simulation doesn't currently support this method.";
}
/**
* The last direction the encoder value changed.
* @return The last direction the encoder value changed.
*/
bool Encoder::GetDirection() const
{
throw "Simulation doesn't currently support this method.";
}
/**
* The scale needed to convert a raw counter value into a number of encoder pulses.
*/
double Encoder::DecodingScaleFactor() const
{
switch (m_encodingType)
{
case k1X:
return 1.0;
case k2X:
return 0.5;
case k4X:
return 0.25;
default:
return 0.0;
}
}
/**
* The encoding scale factor 1x, 2x, or 4x, per the requested encodingType.
* Used to divide raw edge counts down to spec'd counts.
*/
int32_t Encoder::GetEncodingScale() const { return m_encodingScale; }
/**
* Gets the raw value from the encoder.
* The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
* factor.
* @return Current raw count from the encoder
*/
int32_t Encoder::GetRaw() const
{
throw "Simulation doesn't currently support this method.";
}
/**
* Gets the current count.
* Returns the current count on the Encoder.
* This method compensates for the decoding type.
*
* @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.
*/
int32_t Encoder::Get() const
{
throw "Simulation doesn't currently support this method.";
}
/**
* Returns the period of the most recent pulse.
* Returns the period of the most recent Encoder pulse in seconds.
* This method compenstates for the decoding type.
*
* @deprecated Use GetRate() in favor of this method. This returns unscaled periods and GetRate() scales using value from SetDistancePerPulse().
*
* @return Period in seconds of the most recent pulse.
*/
double Encoder::GetPeriod() const
{
throw "Simulation doesn't currently support this method.";
}
/**
* Sets the maximum period for stopped detection.
* Sets the value that represents the maximum period of the Encoder before it will assume
* that the attached device is stopped. This timeout allows users to determine if the wheels or
* other shaft has stopped rotating.
* This method compensates for the decoding type.
*
* @deprecated Use SetMinRate() in favor of this method. This takes unscaled periods and SetMinRate() scales using value from SetDistancePerPulse().
*
* @param maxPeriod The maximum time between rising and falling edges before the FPGA will
* report the device stopped. This is expressed in seconds.
*/
void Encoder::SetMaxPeriod(double maxPeriod)
{
throw "Simulation doesn't currently support this method.";
}
/**
* Get the distance the robot has driven since the last reset.
*
* @return The distance driven since the last reset as scaled by the value from SetDistancePerPulse().
*/
double Encoder::GetDistance() const
{
return m_distancePerPulse * impl->GetPosition();
}
/**
* Get the current rate of the encoder.
* Units are distance per second as scaled by the value from SetDistancePerPulse().
*
* @return The current rate of the encoder.
*/
double Encoder::GetRate() const
{
return m_distancePerPulse * impl->GetVelocity();
}
/**
* Set the minimum rate of the device before the hardware reports it stopped.
*
* @param minRate The minimum rate. The units are in distance per second as scaled by the value from SetDistancePerPulse().
*/
void Encoder::SetMinRate(double minRate)
{
throw "Simulation doesn't currently support this method.";
}
/**
* Set the distance per pulse for this encoder.
* This sets the multiplier used to determine the distance driven based on the count value
* from the encoder.
* Do not include the decoding type in this scale. The library already compensates for the decoding type.
* Set this value based on the encoder's rated Pulses per Revolution and
* factor in gearing reductions following the encoder shaft.
* This distance can be in any units you like, linear or angular.
*
* @param distancePerPulse The scale factor that will be used to convert pulses to useful units.
*/
void Encoder::SetDistancePerPulse(double distancePerPulse)
{
if (m_reverseDirection) {
m_distancePerPulse = -distancePerPulse;
} else {
m_distancePerPulse = distancePerPulse;
}
}
/**
* Set the direction sensing for this encoder.
* This sets the direction sensing on the encoder so that it could count in the correct
* software direction regardless of the mounting.
* @param reverseDirection true if the encoder direction should be reversed
*/
void Encoder::SetReverseDirection(bool reverseDirection)
{
throw "Simulation doesn't currently support this method.";
}
/**
* Set which parameter of the encoder you are using as a process control variable.
*
* @param pidSource An enum to select the parameter.
*/
void Encoder::SetPIDSourceType(PIDSourceType pidSource)
{
m_pidSource = pidSource;
}
/**
* Implement the PIDSource interface.
*
* @return The current value of the selected source parameter.
*/
double Encoder::PIDGet()
{
switch (m_pidSource)
{
case PIDSourceType::kDisplacement:
return GetDistance();
case PIDSourceType::kRate:
return GetRate();
default:
return 0.0;
}
}
void Encoder::UpdateTable() {
if (m_table != nullptr) {
m_table->PutNumber("Speed", GetRate());
m_table->PutNumber("Distance", GetDistance());
m_table->PutNumber("Distance per Tick", m_reverseDirection ? -m_distancePerPulse : m_distancePerPulse);
}
}
void Encoder::StartLiveWindowMode() {
}
void Encoder::StopLiveWindowMode() {
}
std::string Encoder::GetSmartDashboardType() const {
if (m_encodingType == k4X)
return "Quadrature Encoder";
else
return "Encoder";
}
void Encoder::InitTable(std::shared_ptr<ITable> subTable) {
m_table = subTable;
UpdateTable();
}
std::shared_ptr<ITable> Encoder::GetTable() const {
return m_table;
}