| /*----------------------------------------------------------------------------*/ |
| /* Copyright (c) FIRST 2008. All Rights Reserved. |
| */ |
| /* Open Source Software - may be modified and shared by FRC teams. The code */ |
| /* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ |
| /*----------------------------------------------------------------------------*/ |
| |
| #include "RobotDrive.h" |
| |
| #include "CANJaguar.h" |
| #include "GenericHID.h" |
| #include "Joystick.h" |
| #include "Talon.h" |
| #include "Utility.h" |
| #include "WPIErrors.h" |
| #include <math.h> |
| |
| #undef max |
| #include <algorithm> |
| |
| const int32_t RobotDrive::kMaxNumberOfMotors; |
| |
| static auto make_shared_nodelete(SpeedController *ptr) { |
| return std::shared_ptr<SpeedController>(ptr, NullDeleter<SpeedController>()); |
| } |
| |
| /* |
| * Driving functions |
| * These functions provide an interface to multiple motors that is used for C |
| * programming |
| * The Drive(speed, direction) function is the main part of the set that makes |
| * it easy |
| * to set speeds and direction independently in one call. |
| */ |
| |
| /** |
| * Common function to initialize all the robot drive constructors. |
| * Create a motor safety object (the real reason for the common code) and |
| * initialize all the motor assignments. The default timeout is set for the |
| * robot drive. |
| */ |
| void RobotDrive::InitRobotDrive() { |
| m_safetyHelper = std::make_unique<MotorSafetyHelper>(this); |
| m_safetyHelper->SetSafetyEnabled(true); |
| } |
| |
| /** |
| * Constructor for RobotDrive with 2 motors specified with channel numbers. |
| * Set up parameters for a two wheel drive system where the |
| * left and right motor pwm channels are specified in the call. |
| * This call assumes Talons for controlling the motors. |
| * @param leftMotorChannel The PWM channel number that drives the left motor. |
| * 0-9 are on-board, 10-19 are on the MXP port |
| * @param rightMotorChannel The PWM channel number that drives the right motor. |
| * 0-9 are on-board, 10-19 are on the MXP port |
| */ |
| RobotDrive::RobotDrive(uint32_t leftMotorChannel, uint32_t rightMotorChannel) { |
| InitRobotDrive(); |
| m_rearLeftMotor = std::make_shared<Talon>(leftMotorChannel); |
| m_rearRightMotor = std::make_shared<Talon>(rightMotorChannel); |
| SetLeftRightMotorOutputs(0.0, 0.0); |
| } |
| |
| /** |
| * Constructor for RobotDrive with 4 motors specified with channel numbers. |
| * Set up parameters for a four wheel drive system where all four motor |
| * pwm channels are specified in the call. |
| * This call assumes Talons for controlling the motors. |
| * @param frontLeftMotor Front left motor channel number. 0-9 are on-board, |
| * 10-19 are on the MXP port |
| * @param rearLeftMotor Rear Left motor channel number. 0-9 are on-board, 10-19 |
| * are on the MXP port |
| * @param frontRightMotor Front right motor channel number. 0-9 are on-board, |
| * 10-19 are on the MXP port |
| * @param rearRightMotor Rear Right motor channel number. 0-9 are on-board, |
| * 10-19 are on the MXP port |
| */ |
| RobotDrive::RobotDrive(uint32_t frontLeftMotor, uint32_t rearLeftMotor, |
| uint32_t frontRightMotor, uint32_t rearRightMotor) { |
| InitRobotDrive(); |
| m_rearLeftMotor = std::make_shared<Talon>(rearLeftMotor); |
| m_rearRightMotor = std::make_shared<Talon>(rearRightMotor); |
| m_frontLeftMotor = std::make_shared<Talon>(frontLeftMotor); |
| m_frontRightMotor = std::make_shared<Talon>(frontRightMotor); |
| SetLeftRightMotorOutputs(0.0, 0.0); |
| } |
| |
| /** |
| * Constructor for RobotDrive with 2 motors specified as SpeedController |
| * objects. |
| * The SpeedController version of the constructor enables programs to use the |
| * RobotDrive classes with |
| * subclasses of the SpeedController objects, for example, versions with ramping |
| * or reshaping of |
| * the curve to suit motor bias or deadband elimination. |
| * @param leftMotor The left SpeedController object used to drive the robot. |
| * @param rightMotor the right SpeedController object used to drive the robot. |
| */ |
| RobotDrive::RobotDrive(SpeedController *leftMotor, |
| SpeedController *rightMotor) { |
| InitRobotDrive(); |
| if (leftMotor == nullptr || rightMotor == nullptr) { |
| wpi_setWPIError(NullParameter); |
| m_rearLeftMotor = m_rearRightMotor = nullptr; |
| return; |
| } |
| m_rearLeftMotor = make_shared_nodelete(leftMotor); |
| m_rearRightMotor = make_shared_nodelete(rightMotor); |
| } |
| |
| //TODO: Change to rvalue references & move syntax. |
| RobotDrive::RobotDrive(SpeedController &leftMotor, |
| SpeedController &rightMotor) { |
| InitRobotDrive(); |
| m_rearLeftMotor = make_shared_nodelete(&leftMotor); |
| m_rearRightMotor = make_shared_nodelete(&rightMotor); |
| } |
| |
| RobotDrive::RobotDrive(std::shared_ptr<SpeedController> leftMotor, |
| std::shared_ptr<SpeedController> rightMotor) { |
| InitRobotDrive(); |
| if (leftMotor == nullptr || rightMotor == nullptr) { |
| wpi_setWPIError(NullParameter); |
| m_rearLeftMotor = m_rearRightMotor = nullptr; |
| return; |
| } |
| m_rearLeftMotor = leftMotor; |
| m_rearRightMotor = rightMotor; |
| } |
| |
| /** |
| * Constructor for RobotDrive with 4 motors specified as SpeedController |
| * objects. |
| * Speed controller input version of RobotDrive (see previous comments). |
| * @param rearLeftMotor The back left SpeedController object used to drive the |
| * robot. |
| * @param frontLeftMotor The front left SpeedController object used to drive the |
| * robot |
| * @param rearRightMotor The back right SpeedController object used to drive the |
| * robot. |
| * @param frontRightMotor The front right SpeedController object used to drive |
| * the robot. |
| */ |
| RobotDrive::RobotDrive(SpeedController *frontLeftMotor, |
| SpeedController *rearLeftMotor, |
| SpeedController *frontRightMotor, |
| SpeedController *rearRightMotor) { |
| InitRobotDrive(); |
| if (frontLeftMotor == nullptr || rearLeftMotor == nullptr || |
| frontRightMotor == nullptr || rearRightMotor == nullptr) { |
| wpi_setWPIError(NullParameter); |
| return; |
| } |
| m_frontLeftMotor = make_shared_nodelete(frontLeftMotor); |
| m_rearLeftMotor = make_shared_nodelete(rearLeftMotor); |
| m_frontRightMotor = make_shared_nodelete(frontRightMotor); |
| m_rearRightMotor = make_shared_nodelete(rearRightMotor); |
| } |
| |
| RobotDrive::RobotDrive(SpeedController &frontLeftMotor, |
| SpeedController &rearLeftMotor, |
| SpeedController &frontRightMotor, |
| SpeedController &rearRightMotor) { |
| InitRobotDrive(); |
| m_frontLeftMotor = make_shared_nodelete(&frontLeftMotor); |
| m_rearLeftMotor = make_shared_nodelete(&rearLeftMotor); |
| m_frontRightMotor = make_shared_nodelete(&frontRightMotor); |
| m_rearRightMotor = make_shared_nodelete(&rearRightMotor); |
| } |
| |
| RobotDrive::RobotDrive(std::shared_ptr<SpeedController> frontLeftMotor, |
| std::shared_ptr<SpeedController> rearLeftMotor, |
| std::shared_ptr<SpeedController> frontRightMotor, |
| std::shared_ptr<SpeedController> rearRightMotor) { |
| InitRobotDrive(); |
| if (frontLeftMotor == nullptr || rearLeftMotor == nullptr || |
| frontRightMotor == nullptr || rearRightMotor == nullptr) { |
| wpi_setWPIError(NullParameter); |
| return; |
| } |
| m_frontLeftMotor = frontLeftMotor; |
| m_rearLeftMotor = rearLeftMotor; |
| m_frontRightMotor = frontRightMotor; |
| m_rearRightMotor = rearRightMotor; |
| } |
| |
| /** |
| * Drive the motors at "outputMagnitude" and "curve". |
| * Both outputMagnitude and curve are -1.0 to +1.0 values, where 0.0 represents |
| * stopped and not turning. curve < 0 will turn left and curve > 0 will turn |
| * right. |
| * |
| * The algorithm for steering provides a constant turn radius for any normal |
| * speed range, both forward and backward. Increasing m_sensitivity causes |
| * sharper turns for fixed values of curve. |
| * |
| * This function will most likely be used in an autonomous routine. |
| * |
| * @param outputMagnitude The speed setting for the outside wheel in a turn, |
| * forward or backwards, +1 to -1. |
| * @param curve The rate of turn, constant for different forward speeds. Set |
| * curve < 0 for left turn or curve > 0 for right turn. |
| * Set curve = e^(-r/w) to get a turn radius r for wheelbase w of your robot. |
| * Conversely, turn radius r = -ln(curve)*w for a given value of curve and |
| * wheelbase w. |
| */ |
| void RobotDrive::Drive(float outputMagnitude, float curve) { |
| float leftOutput, rightOutput; |
| static bool reported = false; |
| if (!reported) { |
| HALReport(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(), |
| HALUsageReporting::kRobotDrive_ArcadeRatioCurve); |
| reported = true; |
| } |
| |
| if (curve < 0) { |
| float value = log(-curve); |
| float ratio = (value - m_sensitivity) / (value + m_sensitivity); |
| if (ratio == 0) ratio = .0000000001; |
| leftOutput = outputMagnitude / ratio; |
| rightOutput = outputMagnitude; |
| } else if (curve > 0) { |
| float value = log(curve); |
| float ratio = (value - m_sensitivity) / (value + m_sensitivity); |
| if (ratio == 0) ratio = .0000000001; |
| leftOutput = outputMagnitude; |
| rightOutput = outputMagnitude / ratio; |
| } else { |
| leftOutput = outputMagnitude; |
| rightOutput = outputMagnitude; |
| } |
| SetLeftRightMotorOutputs(leftOutput, rightOutput); |
| } |
| |
| /** |
| * Provide tank steering using the stored robot configuration. |
| * Drive the robot using two joystick inputs. The Y-axis will be selected from |
| * each Joystick object. |
| * @param leftStick The joystick to control the left side of the robot. |
| * @param rightStick The joystick to control the right side of the robot. |
| */ |
| void RobotDrive::TankDrive(GenericHID *leftStick, GenericHID *rightStick, |
| bool squaredInputs) { |
| if (leftStick == nullptr || rightStick == nullptr) { |
| wpi_setWPIError(NullParameter); |
| return; |
| } |
| TankDrive(leftStick->GetY(), rightStick->GetY(), squaredInputs); |
| } |
| |
| void RobotDrive::TankDrive(GenericHID &leftStick, GenericHID &rightStick, |
| bool squaredInputs) { |
| TankDrive(leftStick.GetY(), rightStick.GetY(), squaredInputs); |
| } |
| |
| /** |
| * Provide tank steering using the stored robot configuration. |
| * This function lets you pick the axis to be used on each Joystick object for |
| * the left |
| * and right sides of the robot. |
| * @param leftStick The Joystick object to use for the left side of the robot. |
| * @param leftAxis The axis to select on the left side Joystick object. |
| * @param rightStick The Joystick object to use for the right side of the robot. |
| * @param rightAxis The axis to select on the right side Joystick object. |
| */ |
| void RobotDrive::TankDrive(GenericHID *leftStick, uint32_t leftAxis, |
| GenericHID *rightStick, uint32_t rightAxis, |
| bool squaredInputs) { |
| if (leftStick == nullptr || rightStick == nullptr) { |
| wpi_setWPIError(NullParameter); |
| return; |
| } |
| TankDrive(leftStick->GetRawAxis(leftAxis), rightStick->GetRawAxis(rightAxis), |
| squaredInputs); |
| } |
| |
| void RobotDrive::TankDrive(GenericHID &leftStick, uint32_t leftAxis, |
| GenericHID &rightStick, uint32_t rightAxis, |
| bool squaredInputs) { |
| TankDrive(leftStick.GetRawAxis(leftAxis), rightStick.GetRawAxis(rightAxis), |
| squaredInputs); |
| } |
| |
| /** |
| * Provide tank steering using the stored robot configuration. |
| * This function lets you directly provide joystick values from any source. |
| * @param leftValue The value of the left stick. |
| * @param rightValue The value of the right stick. |
| */ |
| void RobotDrive::TankDrive(float leftValue, float rightValue, |
| bool squaredInputs) { |
| static bool reported = false; |
| if (!reported) { |
| HALReport(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(), |
| HALUsageReporting::kRobotDrive_Tank); |
| reported = true; |
| } |
| |
| // square the inputs (while preserving the sign) to increase fine control |
| // while permitting full power |
| leftValue = Limit(leftValue); |
| rightValue = Limit(rightValue); |
| if (squaredInputs) { |
| if (leftValue >= 0.0) { |
| leftValue = (leftValue * leftValue); |
| } else { |
| leftValue = -(leftValue * leftValue); |
| } |
| if (rightValue >= 0.0) { |
| rightValue = (rightValue * rightValue); |
| } else { |
| rightValue = -(rightValue * rightValue); |
| } |
| } |
| |
| SetLeftRightMotorOutputs(leftValue, rightValue); |
| } |
| |
| /** |
| * Arcade drive implements single stick driving. |
| * Given a single Joystick, the class assumes the Y axis for the move value and |
| * the X axis |
| * for the rotate value. |
| * (Should add more information here regarding the way that arcade drive works.) |
| * @param stick The joystick to use for Arcade single-stick driving. The Y-axis |
| * will be selected |
| * for forwards/backwards and the X-axis will be selected for rotation rate. |
| * @param squaredInputs If true, the sensitivity will be increased for small |
| * values |
| */ |
| void RobotDrive::ArcadeDrive(GenericHID *stick, bool squaredInputs) { |
| // simply call the full-featured ArcadeDrive with the appropriate values |
| ArcadeDrive(stick->GetY(), stick->GetX(), squaredInputs); |
| } |
| |
| /** |
| * Arcade drive implements single stick driving. |
| * Given a single Joystick, the class assumes the Y axis for the move value and |
| * the X axis |
| * for the rotate value. |
| * (Should add more information here regarding the way that arcade drive works.) |
| * @param stick The joystick to use for Arcade single-stick driving. The Y-axis |
| * will be selected |
| * for forwards/backwards and the X-axis will be selected for rotation rate. |
| * @param squaredInputs If true, the sensitivity will be increased for small |
| * values |
| */ |
| void RobotDrive::ArcadeDrive(GenericHID &stick, bool squaredInputs) { |
| // simply call the full-featured ArcadeDrive with the appropriate values |
| ArcadeDrive(stick.GetY(), stick.GetX(), squaredInputs); |
| } |
| |
| /** |
| * Arcade drive implements single stick driving. |
| * Given two joystick instances and two axis, compute the values to send to |
| * either two |
| * or four motors. |
| * @param moveStick The Joystick object that represents the forward/backward |
| * direction |
| * @param moveAxis The axis on the moveStick object to use for fowards/backwards |
| * (typically Y_AXIS) |
| * @param rotateStick The Joystick object that represents the rotation value |
| * @param rotateAxis The axis on the rotation object to use for the rotate |
| * right/left (typically X_AXIS) |
| * @param squaredInputs Setting this parameter to true increases the sensitivity |
| * at lower speeds |
| */ |
| void RobotDrive::ArcadeDrive(GenericHID *moveStick, uint32_t moveAxis, |
| GenericHID *rotateStick, uint32_t rotateAxis, |
| bool squaredInputs) { |
| float moveValue = moveStick->GetRawAxis(moveAxis); |
| float rotateValue = rotateStick->GetRawAxis(rotateAxis); |
| |
| ArcadeDrive(moveValue, rotateValue, squaredInputs); |
| } |
| |
| /** |
| * Arcade drive implements single stick driving. |
| * Given two joystick instances and two axis, compute the values to send to |
| * either two |
| * or four motors. |
| * @param moveStick The Joystick object that represents the forward/backward |
| * direction |
| * @param moveAxis The axis on the moveStick object to use for fowards/backwards |
| * (typically Y_AXIS) |
| * @param rotateStick The Joystick object that represents the rotation value |
| * @param rotateAxis The axis on the rotation object to use for the rotate |
| * right/left (typically X_AXIS) |
| * @param squaredInputs Setting this parameter to true increases the sensitivity |
| * at lower speeds |
| */ |
| |
| void RobotDrive::ArcadeDrive(GenericHID &moveStick, uint32_t moveAxis, |
| GenericHID &rotateStick, uint32_t rotateAxis, |
| bool squaredInputs) { |
| float moveValue = moveStick.GetRawAxis(moveAxis); |
| float rotateValue = rotateStick.GetRawAxis(rotateAxis); |
| |
| ArcadeDrive(moveValue, rotateValue, squaredInputs); |
| } |
| |
| /** |
| * Arcade drive implements single stick driving. |
| * This function lets you directly provide joystick values from any source. |
| * @param moveValue The value to use for fowards/backwards |
| * @param rotateValue The value to use for the rotate right/left |
| * @param squaredInputs If set, increases the sensitivity at low speeds |
| */ |
| void RobotDrive::ArcadeDrive(float moveValue, float rotateValue, |
| bool squaredInputs) { |
| static bool reported = false; |
| if (!reported) { |
| HALReport(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(), |
| HALUsageReporting::kRobotDrive_ArcadeStandard); |
| reported = true; |
| } |
| |
| // local variables to hold the computed PWM values for the motors |
| float leftMotorOutput; |
| float rightMotorOutput; |
| |
| moveValue = Limit(moveValue); |
| rotateValue = Limit(rotateValue); |
| |
| if (squaredInputs) { |
| // square the inputs (while preserving the sign) to increase fine control |
| // while permitting full power |
| if (moveValue >= 0.0) { |
| moveValue = (moveValue * moveValue); |
| } else { |
| moveValue = -(moveValue * moveValue); |
| } |
| if (rotateValue >= 0.0) { |
| rotateValue = (rotateValue * rotateValue); |
| } else { |
| rotateValue = -(rotateValue * rotateValue); |
| } |
| } |
| |
| if (moveValue > 0.0) { |
| if (rotateValue > 0.0) { |
| leftMotorOutput = moveValue - rotateValue; |
| rightMotorOutput = std::max(moveValue, rotateValue); |
| } else { |
| leftMotorOutput = std::max(moveValue, -rotateValue); |
| rightMotorOutput = moveValue + rotateValue; |
| } |
| } else { |
| if (rotateValue > 0.0) { |
| leftMotorOutput = -std::max(-moveValue, rotateValue); |
| rightMotorOutput = moveValue + rotateValue; |
| } else { |
| leftMotorOutput = moveValue - rotateValue; |
| rightMotorOutput = -std::max(-moveValue, -rotateValue); |
| } |
| } |
| SetLeftRightMotorOutputs(leftMotorOutput, rightMotorOutput); |
| } |
| |
| /** |
| * Drive method for Mecanum wheeled robots. |
| * |
| * A method for driving with Mecanum wheeled robots. There are 4 wheels |
| * on the robot, arranged so that the front and back wheels are toed in 45 |
| * degrees. |
| * When looking at the wheels from the top, the roller axles should form an X |
| * across the robot. |
| * |
| * This is designed to be directly driven by joystick axes. |
| * |
| * @param x The speed that the robot should drive in the X direction. |
| * [-1.0..1.0] |
| * @param y The speed that the robot should drive in the Y direction. |
| * This input is inverted to match the forward == -1.0 that joysticks produce. |
| * [-1.0..1.0] |
| * @param rotation The rate of rotation for the robot that is completely |
| * independent of |
| * the translation. [-1.0..1.0] |
| * @param gyroAngle The current angle reading from the gyro. Use this to |
| * implement field-oriented controls. |
| */ |
| void RobotDrive::MecanumDrive_Cartesian(float x, float y, float rotation, |
| float gyroAngle) { |
| static bool reported = false; |
| if (!reported) { |
| HALReport(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(), |
| HALUsageReporting::kRobotDrive_MecanumCartesian); |
| reported = true; |
| } |
| |
| double xIn = x; |
| double yIn = y; |
| // Negate y for the joystick. |
| yIn = -yIn; |
| // Compenstate for gyro angle. |
| RotateVector(xIn, yIn, gyroAngle); |
| |
| double wheelSpeeds[kMaxNumberOfMotors]; |
| wheelSpeeds[kFrontLeftMotor] = xIn + yIn + rotation; |
| wheelSpeeds[kFrontRightMotor] = -xIn + yIn - rotation; |
| wheelSpeeds[kRearLeftMotor] = -xIn + yIn + rotation; |
| wheelSpeeds[kRearRightMotor] = xIn + yIn - rotation; |
| |
| Normalize(wheelSpeeds); |
| |
| m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_maxOutput, |
| m_syncGroup); |
| m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_maxOutput, |
| m_syncGroup); |
| m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_maxOutput, m_syncGroup); |
| m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_maxOutput, |
| m_syncGroup); |
| |
| if (m_syncGroup != 0) { |
| CANJaguar::UpdateSyncGroup(m_syncGroup); |
| } |
| |
| m_safetyHelper->Feed(); |
| } |
| |
| /** |
| * Drive method for Mecanum wheeled robots. |
| * |
| * A method for driving with Mecanum wheeled robots. There are 4 wheels |
| * on the robot, arranged so that the front and back wheels are toed in 45 |
| * degrees. |
| * When looking at the wheels from the top, the roller axles should form an X |
| * across the robot. |
| * |
| * @param magnitude The speed that the robot should drive in a given direction. |
| * [-1.0..1.0] |
| * @param direction The direction the robot should drive in degrees. The |
| * direction and maginitute are |
| * independent of the rotation rate. |
| * @param rotation The rate of rotation for the robot that is completely |
| * independent of |
| * the magnitute or direction. [-1.0..1.0] |
| */ |
| void RobotDrive::MecanumDrive_Polar(float magnitude, float direction, |
| float rotation) { |
| static bool reported = false; |
| if (!reported) { |
| HALReport(HALUsageReporting::kResourceType_RobotDrive, GetNumMotors(), |
| HALUsageReporting::kRobotDrive_MecanumPolar); |
| reported = true; |
| } |
| |
| // Normalized for full power along the Cartesian axes. |
| magnitude = Limit(magnitude) * sqrt(2.0); |
| // The rollers are at 45 degree angles. |
| double dirInRad = (direction + 45.0) * 3.14159 / 180.0; |
| double cosD = cos(dirInRad); |
| double sinD = sin(dirInRad); |
| |
| double wheelSpeeds[kMaxNumberOfMotors]; |
| wheelSpeeds[kFrontLeftMotor] = sinD * magnitude + rotation; |
| wheelSpeeds[kFrontRightMotor] = cosD * magnitude - rotation; |
| wheelSpeeds[kRearLeftMotor] = cosD * magnitude + rotation; |
| wheelSpeeds[kRearRightMotor] = sinD * magnitude - rotation; |
| |
| Normalize(wheelSpeeds); |
| |
| m_frontLeftMotor->Set(wheelSpeeds[kFrontLeftMotor] * m_maxOutput, |
| m_syncGroup); |
| m_frontRightMotor->Set(wheelSpeeds[kFrontRightMotor] * m_maxOutput, |
| m_syncGroup); |
| m_rearLeftMotor->Set(wheelSpeeds[kRearLeftMotor] * m_maxOutput, m_syncGroup); |
| m_rearRightMotor->Set(wheelSpeeds[kRearRightMotor] * m_maxOutput, |
| m_syncGroup); |
| |
| if (m_syncGroup != 0) { |
| CANJaguar::UpdateSyncGroup(m_syncGroup); |
| } |
| |
| m_safetyHelper->Feed(); |
| } |
| |
| /** |
| * Holonomic Drive method for Mecanum wheeled robots. |
| * |
| * This is an alias to MecanumDrive_Polar() for backward compatability |
| * |
| * @param magnitude The speed that the robot should drive in a given direction. |
| * [-1.0..1.0] |
| * @param direction The direction the robot should drive. The direction and |
| * maginitute are |
| * independent of the rotation rate. |
| * @param rotation The rate of rotation for the robot that is completely |
| * independent of |
| * the magnitute or direction. [-1.0..1.0] |
| */ |
| void RobotDrive::HolonomicDrive(float magnitude, float direction, |
| float rotation) { |
| MecanumDrive_Polar(magnitude, direction, rotation); |
| } |
| |
| /** Set the speed of the right and left motors. |
| * This is used once an appropriate drive setup function is called such as |
| * TwoWheelDrive(). The motors are set to "leftOutput" and "rightOutput" |
| * and includes flipping the direction of one side for opposing motors. |
| * @param leftOutput The speed to send to the left side of the robot. |
| * @param rightOutput The speed to send to the right side of the robot. |
| */ |
| void RobotDrive::SetLeftRightMotorOutputs(float leftOutput, float rightOutput) { |
| wpi_assert(m_rearLeftMotor != nullptr && m_rearRightMotor != nullptr); |
| |
| if (m_frontLeftMotor != nullptr) |
| m_frontLeftMotor->Set(Limit(leftOutput) * m_maxOutput, m_syncGroup); |
| m_rearLeftMotor->Set(Limit(leftOutput) * m_maxOutput, m_syncGroup); |
| |
| if (m_frontRightMotor != nullptr) |
| m_frontRightMotor->Set(-Limit(rightOutput) * m_maxOutput, m_syncGroup); |
| m_rearRightMotor->Set(-Limit(rightOutput) * m_maxOutput, m_syncGroup); |
| |
| if (m_syncGroup != 0) { |
| CANJaguar::UpdateSyncGroup(m_syncGroup); |
| } |
| |
| m_safetyHelper->Feed(); |
| } |
| |
| /** |
| * Limit motor values to the -1.0 to +1.0 range. |
| */ |
| float RobotDrive::Limit(float num) { |
| if (num > 1.0) { |
| return 1.0; |
| } |
| if (num < -1.0) { |
| return -1.0; |
| } |
| return num; |
| } |
| |
| /** |
| * Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0. |
| */ |
| void RobotDrive::Normalize(double *wheelSpeeds) { |
| double maxMagnitude = fabs(wheelSpeeds[0]); |
| int32_t i; |
| for (i = 1; i < kMaxNumberOfMotors; i++) { |
| double temp = fabs(wheelSpeeds[i]); |
| if (maxMagnitude < temp) maxMagnitude = temp; |
| } |
| if (maxMagnitude > 1.0) { |
| for (i = 0; i < kMaxNumberOfMotors; i++) { |
| wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude; |
| } |
| } |
| } |
| |
| /** |
| * Rotate a vector in Cartesian space. |
| */ |
| void RobotDrive::RotateVector(double &x, double &y, double angle) { |
| double cosA = cos(angle * (3.14159 / 180.0)); |
| double sinA = sin(angle * (3.14159 / 180.0)); |
| double xOut = x * cosA - y * sinA; |
| double yOut = x * sinA + y * cosA; |
| x = xOut; |
| y = yOut; |
| } |
| |
| /* |
| * Invert a motor direction. |
| * This is used when a motor should run in the opposite direction as the drive |
| * code would normally run it. Motors that are direct drive would be inverted, |
| * the |
| * Drive code assumes that the motors are geared with one reversal. |
| * @param motor The motor index to invert. |
| * @param isInverted True if the motor should be inverted when operated. |
| */ |
| void RobotDrive::SetInvertedMotor(MotorType motor, bool isInverted) { |
| if (motor < 0 || motor > 3) { |
| wpi_setWPIError(InvalidMotorIndex); |
| return; |
| } |
| switch (motor) { |
| case kFrontLeftMotor: |
| m_frontLeftMotor->SetInverted(isInverted); |
| break; |
| case kFrontRightMotor: |
| m_frontRightMotor->SetInverted(isInverted); |
| break; |
| case kRearLeftMotor: |
| m_rearLeftMotor->SetInverted(isInverted); |
| break; |
| case kRearRightMotor: |
| m_rearRightMotor->SetInverted(isInverted); |
| break; |
| } |
| } |
| |
| /** |
| * Set the turning sensitivity. |
| * |
| * This only impacts the Drive() entry-point. |
| * @param sensitivity Effectively sets the turning sensitivity (or turn radius |
| * for a given value) |
| */ |
| void RobotDrive::SetSensitivity(float sensitivity) { |
| m_sensitivity = sensitivity; |
| } |
| |
| /** |
| * Configure the scaling factor for using RobotDrive with motor controllers in a |
| * mode other than PercentVbus. |
| * @param maxOutput Multiplied with the output percentage computed by the drive |
| * functions. |
| */ |
| void RobotDrive::SetMaxOutput(double maxOutput) { m_maxOutput = maxOutput; } |
| |
| /** |
| * Set the number of the sync group for the motor controllers. If the motor |
| * controllers are {@link CANJaguar}s, |
| * then they will all be added to this sync group, causing them to update their |
| * values at the same time. |
| * |
| * @param syncGroup the update group to add the motor controllers to |
| */ |
| void RobotDrive::SetCANJaguarSyncGroup(uint8_t syncGroup) { |
| m_syncGroup = syncGroup; |
| } |
| |
| void RobotDrive::SetExpiration(float timeout) { |
| m_safetyHelper->SetExpiration(timeout); |
| } |
| |
| float RobotDrive::GetExpiration() const { |
| return m_safetyHelper->GetExpiration(); |
| } |
| |
| bool RobotDrive::IsAlive() const { return m_safetyHelper->IsAlive(); } |
| |
| bool RobotDrive::IsSafetyEnabled() const { |
| return m_safetyHelper->IsSafetyEnabled(); |
| } |
| |
| void RobotDrive::SetSafetyEnabled(bool enabled) { |
| m_safetyHelper->SetSafetyEnabled(enabled); |
| } |
| |
| void RobotDrive::GetDescription(std::ostringstream& desc) const { |
| desc << "RobotDrive"; |
| } |
| |
| void RobotDrive::StopMotor() { |
| if (m_frontLeftMotor != nullptr) m_frontLeftMotor->Disable(); |
| if (m_frontRightMotor != nullptr) m_frontRightMotor->Disable(); |
| if (m_rearLeftMotor != nullptr) m_rearLeftMotor->Disable(); |
| if (m_rearRightMotor != nullptr) m_rearRightMotor->Disable(); |
| m_safetyHelper->Feed(); |
| } |