blob: 6b3b4b7ec02698e1c16fffa74bd850f79a2f16e3 [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved.
*/
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "PWM.h"
#include "Resource.h"
#include "Utility.h"
#include "WPIErrors.h"
#include "HAL/HAL.hpp"
#include <sstream>
constexpr float PWM::kDefaultPwmPeriod;
constexpr float PWM::kDefaultPwmCenter;
const int32_t PWM::kDefaultPwmStepsDown;
const int32_t PWM::kPwmDisabled;
/**
* Allocate a PWM given a channel number.
*
* Checks channel value range and allocates the appropriate channel.
* The allocation is only done to help users ensure that they don't double
* assign channels.
* @param channel The PWM channel number. 0-9 are on-board, 10-19 are on the MXP
* port
*/
PWM::PWM(uint32_t channel) {
std::stringstream buf;
if (!CheckPWMChannel(channel)) {
buf << "PWM Channel " << channel;
wpi_setWPIErrorWithContext(ChannelIndexOutOfRange, buf.str());
return;
}
int32_t status = 0;
allocatePWMChannel(m_pwm_ports[channel], &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
m_channel = channel;
setPWM(m_pwm_ports[m_channel], kPwmDisabled, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
m_eliminateDeadband = false;
HALReport(HALUsageReporting::kResourceType_PWM, channel);
}
/**
* Free the PWM channel.
*
* Free the resource associated with the PWM channel and set the value to 0.
*/
PWM::~PWM() {
int32_t status = 0;
setPWM(m_pwm_ports[m_channel], kPwmDisabled, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
freePWMChannel(m_pwm_ports[m_channel], &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (m_table != nullptr) m_table->RemoveTableListener(this);
}
/**
* Optionally eliminate the deadband from a speed controller.
* @param eliminateDeadband If true, set the motor curve on the Jaguar to
* eliminate
* the deadband in the middle of the range. Otherwise, keep the full range
* without
* modifying any values.
*/
void PWM::EnableDeadbandElimination(bool eliminateDeadband) {
if (StatusIsFatal()) return;
m_eliminateDeadband = eliminateDeadband;
}
/**
* Set the bounds on the PWM values.
* This sets the bounds on the PWM values for a particular each type of
* controller. The values
* determine the upper and lower speeds as well as the deadband bracket.
* @param max The Minimum pwm value
* @param deadbandMax The high end of the deadband range
* @param center The center speed (off)
* @param deadbandMin The low end of the deadband range
* @param min The minimum pwm value
*/
void PWM::SetBounds(int32_t max, int32_t deadbandMax, int32_t center,
int32_t deadbandMin, int32_t min) {
if (StatusIsFatal()) return;
m_maxPwm = max;
m_deadbandMaxPwm = deadbandMax;
m_centerPwm = center;
m_deadbandMinPwm = deadbandMin;
m_minPwm = min;
}
/**
* Set the bounds on the PWM pulse widths.
* This sets the bounds on the PWM values for a particular type of controller.
* The values
* determine the upper and lower speeds as well as the deadband bracket.
* @param max The max PWM pulse width in ms
* @param deadbandMax The high end of the deadband range pulse width in ms
* @param center The center (off) pulse width in ms
* @param deadbandMin The low end of the deadband pulse width in ms
* @param min The minimum pulse width in ms
*/
void PWM::SetBounds(double max, double deadbandMax, double center,
double deadbandMin, double min) {
// calculate the loop time in milliseconds
int32_t status = 0;
double loopTime =
getLoopTiming(&status) / (kSystemClockTicksPerMicrosecond * 1e3);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
if (StatusIsFatal()) return;
m_maxPwm = (int32_t)((max - kDefaultPwmCenter) / loopTime +
kDefaultPwmStepsDown - 1);
m_deadbandMaxPwm = (int32_t)((deadbandMax - kDefaultPwmCenter) / loopTime +
kDefaultPwmStepsDown - 1);
m_centerPwm = (int32_t)((center - kDefaultPwmCenter) / loopTime +
kDefaultPwmStepsDown - 1);
m_deadbandMinPwm = (int32_t)((deadbandMin - kDefaultPwmCenter) / loopTime +
kDefaultPwmStepsDown - 1);
m_minPwm = (int32_t)((min - kDefaultPwmCenter) / loopTime +
kDefaultPwmStepsDown - 1);
}
/**
* Set the PWM value based on a position.
*
* This is intended to be used by servos.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinNegativePwm() called.
*
* @param pos The position to set the servo between 0.0 and 1.0.
*/
void PWM::SetPosition(float pos) {
if (StatusIsFatal()) return;
if (pos < 0.0) {
pos = 0.0;
} else if (pos > 1.0) {
pos = 1.0;
}
// note, need to perform the multiplication below as floating point before
// converting to int
unsigned short rawValue =
(int32_t)((pos * (float)GetFullRangeScaleFactor()) + GetMinNegativePwm());
// printf("MinNegPWM: %d FullRangeScaleFactor: %d Raw value: %5d Input
//value: %4.4f\n", GetMinNegativePwm(), GetFullRangeScaleFactor(), rawValue,
//pos);
// wpi_assert((rawValue >= GetMinNegativePwm()) && (rawValue <=
//GetMaxPositivePwm()));
wpi_assert(rawValue != kPwmDisabled);
// send the computed pwm value to the FPGA
SetRaw((unsigned short)rawValue);
}
/**
* Get the PWM value in terms of a position.
*
* This is intended to be used by servos.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinNegativePwm() called.
*
* @return The position the servo is set to between 0.0 and 1.0.
*/
float PWM::GetPosition() const {
if (StatusIsFatal()) return 0.0;
int32_t value = GetRaw();
if (value < GetMinNegativePwm()) {
return 0.0;
} else if (value > GetMaxPositivePwm()) {
return 1.0;
} else {
return (float)(value - GetMinNegativePwm()) /
(float)GetFullRangeScaleFactor();
}
}
/**
* Set the PWM value based on a speed.
*
* This is intended to be used by speed controllers.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinPositivePwm() called.
* @pre SetCenterPwm() called.
* @pre SetMaxNegativePwm() called.
* @pre SetMinNegativePwm() called.
*
* @param speed The speed to set the speed controller between -1.0 and 1.0.
*/
void PWM::SetSpeed(float speed) {
if (StatusIsFatal()) return;
// clamp speed to be in the range 1.0 >= speed >= -1.0
if (speed < -1.0) {
speed = -1.0;
} else if (speed > 1.0) {
speed = 1.0;
}
// calculate the desired output pwm value by scaling the speed appropriately
int32_t rawValue;
if (speed == 0.0) {
rawValue = GetCenterPwm();
} else if (speed > 0.0) {
rawValue = (int32_t)(speed * ((float)GetPositiveScaleFactor()) +
((float)GetMinPositivePwm()) + 0.5);
} else {
rawValue = (int32_t)(speed * ((float)GetNegativeScaleFactor()) +
((float)GetMaxNegativePwm()) + 0.5);
}
// the above should result in a pwm_value in the valid range
wpi_assert((rawValue >= GetMinNegativePwm()) &&
(rawValue <= GetMaxPositivePwm()));
wpi_assert(rawValue != kPwmDisabled);
// send the computed pwm value to the FPGA
SetRaw(rawValue);
}
/**
* Get the PWM value in terms of speed.
*
* This is intended to be used by speed controllers.
*
* @pre SetMaxPositivePwm() called.
* @pre SetMinPositivePwm() called.
* @pre SetMaxNegativePwm() called.
* @pre SetMinNegativePwm() called.
*
* @return The most recently set speed between -1.0 and 1.0.
*/
float PWM::GetSpeed() const {
if (StatusIsFatal()) return 0.0;
int32_t value = GetRaw();
if (value == PWM::kPwmDisabled) {
return 0.0;
} else if (value > GetMaxPositivePwm()) {
return 1.0;
} else if (value < GetMinNegativePwm()) {
return -1.0;
} else if (value > GetMinPositivePwm()) {
return (float)(value - GetMinPositivePwm()) /
(float)GetPositiveScaleFactor();
} else if (value < GetMaxNegativePwm()) {
return (float)(value - GetMaxNegativePwm()) /
(float)GetNegativeScaleFactor();
} else {
return 0.0;
}
}
/**
* Set the PWM value directly to the hardware.
*
* Write a raw value to a PWM channel.
*
* @param value Raw PWM value.
*/
void PWM::SetRaw(unsigned short value) {
if (StatusIsFatal()) return;
int32_t status = 0;
setPWM(m_pwm_ports[m_channel], value, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
/**
* Get the PWM value directly from the hardware.
*
* Read a raw value from a PWM channel.
*
* @return Raw PWM control value.
*/
unsigned short PWM::GetRaw() const {
if (StatusIsFatal()) return 0;
int32_t status = 0;
unsigned short value = getPWM(m_pwm_ports[m_channel], &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
return value;
}
/**
* Slow down the PWM signal for old devices.
*
* @param mult The period multiplier to apply to this channel
*/
void PWM::SetPeriodMultiplier(PeriodMultiplier mult) {
if (StatusIsFatal()) return;
int32_t status = 0;
switch (mult) {
case kPeriodMultiplier_4X:
setPWMPeriodScale(m_pwm_ports[m_channel], 3,
&status); // Squelch 3 out of 4 outputs
break;
case kPeriodMultiplier_2X:
setPWMPeriodScale(m_pwm_ports[m_channel], 1,
&status); // Squelch 1 out of 2 outputs
break;
case kPeriodMultiplier_1X:
setPWMPeriodScale(m_pwm_ports[m_channel], 0,
&status); // Don't squelch any outputs
break;
default:
wpi_assert(false);
}
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
void PWM::SetZeroLatch() {
if (StatusIsFatal()) return;
int32_t status = 0;
latchPWMZero(m_pwm_ports[m_channel], &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
void PWM::ValueChanged(ITable* source, llvm::StringRef key,
std::shared_ptr<nt::Value> value, bool isNew) {
if (!value->IsDouble()) return;
SetSpeed(value->GetDouble());
}
void PWM::UpdateTable() {
if (m_table != nullptr) {
m_table->PutNumber("Value", GetSpeed());
}
}
void PWM::StartLiveWindowMode() {
SetSpeed(0);
if (m_table != nullptr) {
m_table->AddTableListener("Value", this, true);
}
}
void PWM::StopLiveWindowMode() {
SetSpeed(0);
if (m_table != nullptr) {
m_table->RemoveTableListener(this);
}
}
std::string PWM::GetSmartDashboardType() const { return "Speed Controller"; }
void PWM::InitTable(std::shared_ptr<ITable> subTable) {
m_table = subTable;
UpdateTable();
}
std::shared_ptr<ITable> PWM::GetTable() const { return m_table; }