blob: 0fa12dfcffd07cdd03b71ed0e2be980870729dfb [file] [log] [blame]
/*----------------------------------------------------------------------------*/
/* Copyright (c) FIRST 2008. All Rights Reserved.
*/
/* Open Source Software - may be modified and shared by FRC teams. The code */
/* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */
/*----------------------------------------------------------------------------*/
#include "Encoder.h"
#include "DigitalInput.h"
#include "Resource.h"
#include "WPIErrors.h"
#include "LiveWindow/LiveWindow.h"
/**
* Common initialization code for Encoders.
* This code allocates resources for Encoders and is common to all constructors.
*
* The counter will start counting immediately.
*
* @param reverseDirection If true, counts down instead of up (this is all
* relative)
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be
* 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are
* selected then
* a counter object will be used and the returned value will either exactly
* match the spec'd count
* or be double (2x) the spec'd count.
*/
void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) {
m_encodingType = encodingType;
switch (encodingType) {
case k4X: {
m_encodingScale = 4;
if (m_aSource->StatusIsFatal()) {
CloneError(*m_aSource);
return;
}
if (m_bSource->StatusIsFatal()) {
CloneError(*m_bSource);
return;
}
int32_t status = 0;
m_encoder = initializeEncoder(
m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(),
m_aSource->GetAnalogTriggerForRouting(),
m_bSource->GetModuleForRouting(), m_bSource->GetChannelForRouting(),
m_bSource->GetAnalogTriggerForRouting(), reverseDirection, &m_index,
&status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
m_counter = nullptr;
SetMaxPeriod(.5);
break;
}
case k1X:
case k2X: {
m_encodingScale = encodingType == k1X ? 1 : 2;
m_counter = std::make_unique<Counter>(m_encodingType, m_aSource,
m_bSource, reverseDirection);
m_index = m_counter->GetFPGAIndex();
break;
}
default:
wpi_setErrorWithContext(-1, "Invalid encodingType argument");
break;
}
HALReport(HALUsageReporting::kResourceType_Encoder, m_index, encodingType);
LiveWindow::GetInstance()->AddSensor("Encoder",
m_aSource->GetChannelForRouting(), this);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels.
*
* The counter will start counting immediately.
*
* @param aChannel The a channel DIO channel. 0-9 are on-board, 10-25 are on the
* MXP port
* @param bChannel The b channel DIO channel. 0-9 are on-board, 10-25 are on the
* MXP port
* @param reverseDirection represents the orientation of the encoder and inverts
* the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be
* 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are
* selected then
* a counter object will be used and the returned value will either exactly
* match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(uint32_t aChannel, uint32_t bChannel, bool reverseDirection,
EncodingType encodingType) {
m_aSource = std::make_shared<DigitalInput>(aChannel);
m_bSource = std::make_shared<DigitalInput>(bChannel);
InitEncoder(reverseDirection, encodingType);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in
* the case where the digital inputs are shared. The Encoder class will not
* allocate the digital inputs and assume that they already are counted.
* The counter will start counting immediately.
*
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts
* the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be
* 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are
* selected then
* a counter object will be used and the returned value will either exactly
* match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource,
bool reverseDirection, EncodingType encodingType)
: m_aSource(aSource, NullDeleter<DigitalSource>()),
m_bSource(bSource, NullDeleter<DigitalSource>()) {
if (m_aSource == nullptr || m_bSource == nullptr)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
Encoder::Encoder(std::shared_ptr<DigitalSource> aSource,
std::shared_ptr<DigitalSource> bSource,
bool reverseDirection, EncodingType encodingType)
: m_aSource(aSource), m_bSource(bSource) {
if (m_aSource == nullptr || m_bSource == nullptr)
wpi_setWPIError(NullParameter);
else
InitEncoder(reverseDirection, encodingType);
}
/**
* Encoder constructor.
* Construct a Encoder given a and b channels as digital inputs. This is used in
* the case
* where the digital inputs are shared. The Encoder class will not allocate the
* digital inputs
* and assume that they already are counted.
*
* The counter will start counting immediately.
*
* @param aSource The source that should be used for the a channel.
* @param bSource the source that should be used for the b channel.
* @param reverseDirection represents the orientation of the encoder and inverts
* the output values
* if necessary so forward represents positive values.
* @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X
* decoding. If 4X is
* selected, then an encoder FPGA object is used and the returned counts will be
* 4x the encoder
* spec'd value since all rising and falling edges are counted. If 1X or 2X are
* selected then
* a counter object will be used and the returned value will either exactly
* match the spec'd count
* or be double (2x) the spec'd count.
*/
Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource,
bool reverseDirection, EncodingType encodingType)
: m_aSource(&aSource, NullDeleter<DigitalSource>()),
m_bSource(&bSource, NullDeleter<DigitalSource>())
{
InitEncoder(reverseDirection, encodingType);
}
/**
* Free the resources for an Encoder.
* Frees the FPGA resources associated with an Encoder.
*/
Encoder::~Encoder() {
if (!m_counter) {
int32_t status = 0;
freeEncoder(m_encoder, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
}
/**
* The encoding scale factor 1x, 2x, or 4x, per the requested encodingType.
* Used to divide raw edge counts down to spec'd counts.
*/
int32_t Encoder::GetEncodingScale() const { return m_encodingScale; }
/**
* Gets the raw value from the encoder.
* The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
* factor.
* @return Current raw count from the encoder
*/
int32_t Encoder::GetRaw() const {
if (StatusIsFatal()) return 0;
int32_t value;
if (m_counter)
value = m_counter->Get();
else {
int32_t status = 0;
value = getEncoder(m_encoder, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
return value;
}
/**
* Gets the current count.
* Returns the current count on the Encoder.
* This method compensates for the decoding type.
*
* @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale
* factor.
*/
int32_t Encoder::Get() const {
if (StatusIsFatal()) return 0;
return (int32_t)(GetRaw() * DecodingScaleFactor());
}
/**
* Reset the Encoder distance to zero.
* Resets the current count to zero on the encoder.
*/
void Encoder::Reset() {
if (StatusIsFatal()) return;
if (m_counter)
m_counter->Reset();
else {
int32_t status = 0;
resetEncoder(m_encoder, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
}
/**
* Returns the period of the most recent pulse.
* Returns the period of the most recent Encoder pulse in seconds.
* This method compensates for the decoding type.
*
* @deprecated Use GetRate() in favor of this method. This returns unscaled
* periods and GetRate() scales using value from SetDistancePerPulse().
*
* @return Period in seconds of the most recent pulse.
*/
double Encoder::GetPeriod() const {
if (StatusIsFatal()) return 0.0;
if (m_counter) {
return m_counter->GetPeriod() / DecodingScaleFactor();
} else {
int32_t status = 0;
double period = getEncoderPeriod(m_encoder, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
return period;
}
}
/**
* Sets the maximum period for stopped detection.
* Sets the value that represents the maximum period of the Encoder before it
* will assume
* that the attached device is stopped. This timeout allows users to determine
* if the wheels or
* other shaft has stopped rotating.
* This method compensates for the decoding type.
*
* @deprecated Use SetMinRate() in favor of this method. This takes unscaled
* periods and SetMinRate() scales using value from SetDistancePerPulse().
*
* @param maxPeriod The maximum time between rising and falling edges before the
* FPGA will
* report the device stopped. This is expressed in seconds.
*/
void Encoder::SetMaxPeriod(double maxPeriod) {
if (StatusIsFatal()) return;
if (m_counter) {
m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor());
} else {
int32_t status = 0;
setEncoderMaxPeriod(m_encoder, maxPeriod, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
}
/**
* Determine if the encoder is stopped.
* Using the MaxPeriod value, a boolean is returned that is true if the encoder
* is considered
* stopped and false if it is still moving. A stopped encoder is one where the
* most recent pulse
* width exceeds the MaxPeriod.
* @return True if the encoder is considered stopped.
*/
bool Encoder::GetStopped() const {
if (StatusIsFatal()) return true;
if (m_counter) {
return m_counter->GetStopped();
} else {
int32_t status = 0;
bool value = getEncoderStopped(m_encoder, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
return value;
}
}
/**
* The last direction the encoder value changed.
* @return The last direction the encoder value changed.
*/
bool Encoder::GetDirection() const {
if (StatusIsFatal()) return false;
if (m_counter) {
return m_counter->GetDirection();
} else {
int32_t status = 0;
bool value = getEncoderDirection(m_encoder, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
return value;
}
}
/**
* The scale needed to convert a raw counter value into a number of encoder
* pulses.
*/
double Encoder::DecodingScaleFactor() const {
if (StatusIsFatal()) return 0.0;
switch (m_encodingType) {
case k1X:
return 1.0;
case k2X:
return 0.5;
case k4X:
return 0.25;
default:
return 0.0;
}
}
/**
* Get the distance the robot has driven since the last reset.
*
* @return The distance driven since the last reset as scaled by the value from
* SetDistancePerPulse().
*/
double Encoder::GetDistance() const {
if (StatusIsFatal()) return 0.0;
return GetRaw() * DecodingScaleFactor() * m_distancePerPulse;
}
/**
* Get the current rate of the encoder.
* Units are distance per second as scaled by the value from
* SetDistancePerPulse().
*
* @return The current rate of the encoder.
*/
double Encoder::GetRate() const {
if (StatusIsFatal()) return 0.0;
return (m_distancePerPulse / GetPeriod());
}
/**
* Set the minimum rate of the device before the hardware reports it stopped.
*
* @param minRate The minimum rate. The units are in distance per second as
* scaled by the value from SetDistancePerPulse().
*/
void Encoder::SetMinRate(double minRate) {
if (StatusIsFatal()) return;
SetMaxPeriod(m_distancePerPulse / minRate);
}
/**
* Set the distance per pulse for this encoder.
* This sets the multiplier used to determine the distance driven based on the
* count value
* from the encoder.
* Do not include the decoding type in this scale. The library already
* compensates for the decoding type.
* Set this value based on the encoder's rated Pulses per Revolution and
* factor in gearing reductions following the encoder shaft.
* This distance can be in any units you like, linear or angular.
*
* @param distancePerPulse The scale factor that will be used to convert pulses
* to useful units.
*/
void Encoder::SetDistancePerPulse(double distancePerPulse) {
if (StatusIsFatal()) return;
m_distancePerPulse = distancePerPulse;
}
/**
* Set the direction sensing for this encoder.
* This sets the direction sensing on the encoder so that it could count in the
* correct
* software direction regardless of the mounting.
* @param reverseDirection true if the encoder direction should be reversed
*/
void Encoder::SetReverseDirection(bool reverseDirection) {
if (StatusIsFatal()) return;
if (m_counter) {
m_counter->SetReverseDirection(reverseDirection);
} else {
int32_t status = 0;
setEncoderReverseDirection(m_encoder, reverseDirection, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
}
}
/**
* Set the Samples to Average which specifies the number of samples of the timer
* to
* average when calculating the period. Perform averaging to account for
* mechanical imperfections or as oversampling to increase resolution.
* @param samplesToAverage The number of samples to average from 1 to 127.
*/
void Encoder::SetSamplesToAverage(int samplesToAverage) {
if (samplesToAverage < 1 || samplesToAverage > 127) {
wpi_setWPIErrorWithContext(
ParameterOutOfRange,
"Average counter values must be between 1 and 127");
}
int32_t status = 0;
switch (m_encodingType) {
case k4X:
setEncoderSamplesToAverage(m_encoder, samplesToAverage, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
break;
case k1X:
case k2X:
m_counter->SetSamplesToAverage(samplesToAverage);
break;
}
}
/**
* Get the Samples to Average which specifies the number of samples of the timer
* to
* average when calculating the period. Perform averaging to account for
* mechanical imperfections or as oversampling to increase resolution.
* @return SamplesToAverage The number of samples being averaged (from 1 to 127)
*/
int Encoder::GetSamplesToAverage() const {
int result = 1;
int32_t status = 0;
switch (m_encodingType) {
case k4X:
result = getEncoderSamplesToAverage(m_encoder, &status);
wpi_setErrorWithContext(status, getHALErrorMessage(status));
break;
case k1X:
case k2X:
result = m_counter->GetSamplesToAverage();
break;
}
return result;
}
/**
* Implement the PIDSource interface.
*
* @return The current value of the selected source parameter.
*/
double Encoder::PIDGet() {
if (StatusIsFatal()) return 0.0;
switch (GetPIDSourceType()) {
case PIDSourceType::kDisplacement:
return GetDistance();
case PIDSourceType::kRate:
return GetRate();
default:
return 0.0;
}
}
/**
* Set the index source for the encoder. When this source is activated, the
* encoder count automatically resets.
*
* @param channel A DIO channel to set as the encoder index
* @param type The state that will cause the encoder to reset
*/
void Encoder::SetIndexSource(uint32_t channel, Encoder::IndexingType type) {
int32_t status = 0;
bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge);
bool edgeSensitive =
(type == kResetOnFallingEdge) || (type == kResetOnRisingEdge);
setEncoderIndexSource(m_encoder, channel, false, activeHigh, edgeSensitive,
&status);
wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status));
}
/**
* Set the index source for the encoder. When this source is activated, the
* encoder count automatically resets.
*
* @param channel A digital source to set as the encoder index
* @param type The state that will cause the encoder to reset
*/
DEPRECATED("Use pass-by-reference instead.")
void Encoder::SetIndexSource(DigitalSource *source,
Encoder::IndexingType type) {
SetIndexSource(*source, type);
}
/**
* Set the index source for the encoder. When this source is activated, the
* encoder count automatically resets.
*
* @param channel A digital source to set as the encoder index
* @param type The state that will cause the encoder to reset
*/
void Encoder::SetIndexSource(const DigitalSource &source,
Encoder::IndexingType type) {
int32_t status = 0;
bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge);
bool edgeSensitive =
(type == kResetOnFallingEdge) || (type == kResetOnRisingEdge);
setEncoderIndexSource(m_encoder, source.GetChannelForRouting(),
source.GetAnalogTriggerForRouting(), activeHigh,
edgeSensitive, &status);
wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status));
}
void Encoder::UpdateTable() {
if (m_table != nullptr) {
m_table->PutNumber("Speed", GetRate());
m_table->PutNumber("Distance", GetDistance());
m_table->PutNumber("Distance per Tick", m_distancePerPulse);
}
}
void Encoder::StartLiveWindowMode() {}
void Encoder::StopLiveWindowMode() {}
std::string Encoder::GetSmartDashboardType() const {
if (m_encodingType == k4X)
return "Quadrature Encoder";
else
return "Encoder";
}
void Encoder::InitTable(std::shared_ptr<ITable> subTable) {
m_table = subTable;
UpdateTable();
}
std::shared_ptr<ITable> Encoder::GetTable() const { return m_table; }