| /*----------------------------------------------------------------------------*/ |
| /* Copyright (c) FIRST 2008. All Rights Reserved. |
| */ |
| /* Open Source Software - may be modified and shared by FRC teams. The code */ |
| /* must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib. */ |
| /*----------------------------------------------------------------------------*/ |
| |
| #include "Encoder.h" |
| #include "DigitalInput.h" |
| #include "Resource.h" |
| #include "WPIErrors.h" |
| #include "LiveWindow/LiveWindow.h" |
| |
| /** |
| * Common initialization code for Encoders. |
| * This code allocates resources for Encoders and is common to all constructors. |
| * |
| * The counter will start counting immediately. |
| * |
| * @param reverseDirection If true, counts down instead of up (this is all |
| * relative) |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| * decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be |
| * 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| * selected then |
| * a counter object will be used and the returned value will either exactly |
| * match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| void Encoder::InitEncoder(bool reverseDirection, EncodingType encodingType) { |
| m_encodingType = encodingType; |
| switch (encodingType) { |
| case k4X: { |
| m_encodingScale = 4; |
| if (m_aSource->StatusIsFatal()) { |
| CloneError(*m_aSource); |
| return; |
| } |
| if (m_bSource->StatusIsFatal()) { |
| CloneError(*m_bSource); |
| return; |
| } |
| int32_t status = 0; |
| m_encoder = initializeEncoder( |
| m_aSource->GetModuleForRouting(), m_aSource->GetChannelForRouting(), |
| m_aSource->GetAnalogTriggerForRouting(), |
| m_bSource->GetModuleForRouting(), m_bSource->GetChannelForRouting(), |
| m_bSource->GetAnalogTriggerForRouting(), reverseDirection, &m_index, |
| &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| m_counter = nullptr; |
| SetMaxPeriod(.5); |
| break; |
| } |
| case k1X: |
| case k2X: { |
| m_encodingScale = encodingType == k1X ? 1 : 2; |
| m_counter = std::make_unique<Counter>(m_encodingType, m_aSource, |
| m_bSource, reverseDirection); |
| m_index = m_counter->GetFPGAIndex(); |
| break; |
| } |
| default: |
| wpi_setErrorWithContext(-1, "Invalid encodingType argument"); |
| break; |
| } |
| |
| HALReport(HALUsageReporting::kResourceType_Encoder, m_index, encodingType); |
| LiveWindow::GetInstance()->AddSensor("Encoder", |
| m_aSource->GetChannelForRouting(), this); |
| } |
| |
| /** |
| * Encoder constructor. |
| * Construct a Encoder given a and b channels. |
| * |
| * The counter will start counting immediately. |
| * |
| * @param aChannel The a channel DIO channel. 0-9 are on-board, 10-25 are on the |
| * MXP port |
| * @param bChannel The b channel DIO channel. 0-9 are on-board, 10-25 are on the |
| * MXP port |
| * @param reverseDirection represents the orientation of the encoder and inverts |
| * the output values |
| * if necessary so forward represents positive values. |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| * decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be |
| * 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| * selected then |
| * a counter object will be used and the returned value will either exactly |
| * match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| Encoder::Encoder(uint32_t aChannel, uint32_t bChannel, bool reverseDirection, |
| EncodingType encodingType) { |
| m_aSource = std::make_shared<DigitalInput>(aChannel); |
| m_bSource = std::make_shared<DigitalInput>(bChannel); |
| InitEncoder(reverseDirection, encodingType); |
| } |
| |
| /** |
| * Encoder constructor. |
| * Construct a Encoder given a and b channels as digital inputs. This is used in |
| * the case where the digital inputs are shared. The Encoder class will not |
| * allocate the digital inputs and assume that they already are counted. |
| * The counter will start counting immediately. |
| * |
| * @param aSource The source that should be used for the a channel. |
| * @param bSource the source that should be used for the b channel. |
| * @param reverseDirection represents the orientation of the encoder and inverts |
| * the output values |
| * if necessary so forward represents positive values. |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| * decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be |
| * 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| * selected then |
| * a counter object will be used and the returned value will either exactly |
| * match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| Encoder::Encoder(DigitalSource *aSource, DigitalSource *bSource, |
| bool reverseDirection, EncodingType encodingType) |
| : m_aSource(aSource, NullDeleter<DigitalSource>()), |
| m_bSource(bSource, NullDeleter<DigitalSource>()) { |
| if (m_aSource == nullptr || m_bSource == nullptr) |
| wpi_setWPIError(NullParameter); |
| else |
| InitEncoder(reverseDirection, encodingType); |
| } |
| |
| Encoder::Encoder(std::shared_ptr<DigitalSource> aSource, |
| std::shared_ptr<DigitalSource> bSource, |
| bool reverseDirection, EncodingType encodingType) |
| : m_aSource(aSource), m_bSource(bSource) { |
| if (m_aSource == nullptr || m_bSource == nullptr) |
| wpi_setWPIError(NullParameter); |
| else |
| InitEncoder(reverseDirection, encodingType); |
| } |
| |
| /** |
| * Encoder constructor. |
| * Construct a Encoder given a and b channels as digital inputs. This is used in |
| * the case |
| * where the digital inputs are shared. The Encoder class will not allocate the |
| * digital inputs |
| * and assume that they already are counted. |
| * |
| * The counter will start counting immediately. |
| * |
| * @param aSource The source that should be used for the a channel. |
| * @param bSource the source that should be used for the b channel. |
| * @param reverseDirection represents the orientation of the encoder and inverts |
| * the output values |
| * if necessary so forward represents positive values. |
| * @param encodingType either k1X, k2X, or k4X to indicate 1X, 2X or 4X |
| * decoding. If 4X is |
| * selected, then an encoder FPGA object is used and the returned counts will be |
| * 4x the encoder |
| * spec'd value since all rising and falling edges are counted. If 1X or 2X are |
| * selected then |
| * a counter object will be used and the returned value will either exactly |
| * match the spec'd count |
| * or be double (2x) the spec'd count. |
| */ |
| Encoder::Encoder(DigitalSource &aSource, DigitalSource &bSource, |
| bool reverseDirection, EncodingType encodingType) |
| : m_aSource(&aSource, NullDeleter<DigitalSource>()), |
| m_bSource(&bSource, NullDeleter<DigitalSource>()) |
| { |
| InitEncoder(reverseDirection, encodingType); |
| } |
| |
| /** |
| * Free the resources for an Encoder. |
| * Frees the FPGA resources associated with an Encoder. |
| */ |
| Encoder::~Encoder() { |
| if (!m_counter) { |
| int32_t status = 0; |
| freeEncoder(m_encoder, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| } |
| } |
| |
| /** |
| * The encoding scale factor 1x, 2x, or 4x, per the requested encodingType. |
| * Used to divide raw edge counts down to spec'd counts. |
| */ |
| int32_t Encoder::GetEncodingScale() const { return m_encodingScale; } |
| |
| /** |
| * Gets the raw value from the encoder. |
| * The raw value is the actual count unscaled by the 1x, 2x, or 4x scale |
| * factor. |
| * @return Current raw count from the encoder |
| */ |
| int32_t Encoder::GetRaw() const { |
| if (StatusIsFatal()) return 0; |
| int32_t value; |
| if (m_counter) |
| value = m_counter->Get(); |
| else { |
| int32_t status = 0; |
| value = getEncoder(m_encoder, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| } |
| return value; |
| } |
| |
| /** |
| * Gets the current count. |
| * Returns the current count on the Encoder. |
| * This method compensates for the decoding type. |
| * |
| * @return Current count from the Encoder adjusted for the 1x, 2x, or 4x scale |
| * factor. |
| */ |
| int32_t Encoder::Get() const { |
| if (StatusIsFatal()) return 0; |
| return (int32_t)(GetRaw() * DecodingScaleFactor()); |
| } |
| |
| /** |
| * Reset the Encoder distance to zero. |
| * Resets the current count to zero on the encoder. |
| */ |
| void Encoder::Reset() { |
| if (StatusIsFatal()) return; |
| if (m_counter) |
| m_counter->Reset(); |
| else { |
| int32_t status = 0; |
| resetEncoder(m_encoder, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| } |
| } |
| |
| /** |
| * Returns the period of the most recent pulse. |
| * Returns the period of the most recent Encoder pulse in seconds. |
| * This method compensates for the decoding type. |
| * |
| * @deprecated Use GetRate() in favor of this method. This returns unscaled |
| * periods and GetRate() scales using value from SetDistancePerPulse(). |
| * |
| * @return Period in seconds of the most recent pulse. |
| */ |
| double Encoder::GetPeriod() const { |
| if (StatusIsFatal()) return 0.0; |
| if (m_counter) { |
| return m_counter->GetPeriod() / DecodingScaleFactor(); |
| } else { |
| int32_t status = 0; |
| double period = getEncoderPeriod(m_encoder, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| return period; |
| } |
| } |
| |
| /** |
| * Sets the maximum period for stopped detection. |
| * Sets the value that represents the maximum period of the Encoder before it |
| * will assume |
| * that the attached device is stopped. This timeout allows users to determine |
| * if the wheels or |
| * other shaft has stopped rotating. |
| * This method compensates for the decoding type. |
| * |
| * @deprecated Use SetMinRate() in favor of this method. This takes unscaled |
| * periods and SetMinRate() scales using value from SetDistancePerPulse(). |
| * |
| * @param maxPeriod The maximum time between rising and falling edges before the |
| * FPGA will |
| * report the device stopped. This is expressed in seconds. |
| */ |
| void Encoder::SetMaxPeriod(double maxPeriod) { |
| if (StatusIsFatal()) return; |
| if (m_counter) { |
| m_counter->SetMaxPeriod(maxPeriod * DecodingScaleFactor()); |
| } else { |
| int32_t status = 0; |
| setEncoderMaxPeriod(m_encoder, maxPeriod, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| } |
| } |
| |
| /** |
| * Determine if the encoder is stopped. |
| * Using the MaxPeriod value, a boolean is returned that is true if the encoder |
| * is considered |
| * stopped and false if it is still moving. A stopped encoder is one where the |
| * most recent pulse |
| * width exceeds the MaxPeriod. |
| * @return True if the encoder is considered stopped. |
| */ |
| bool Encoder::GetStopped() const { |
| if (StatusIsFatal()) return true; |
| if (m_counter) { |
| return m_counter->GetStopped(); |
| } else { |
| int32_t status = 0; |
| bool value = getEncoderStopped(m_encoder, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| return value; |
| } |
| } |
| |
| /** |
| * The last direction the encoder value changed. |
| * @return The last direction the encoder value changed. |
| */ |
| bool Encoder::GetDirection() const { |
| if (StatusIsFatal()) return false; |
| if (m_counter) { |
| return m_counter->GetDirection(); |
| } else { |
| int32_t status = 0; |
| bool value = getEncoderDirection(m_encoder, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| return value; |
| } |
| } |
| |
| /** |
| * The scale needed to convert a raw counter value into a number of encoder |
| * pulses. |
| */ |
| double Encoder::DecodingScaleFactor() const { |
| if (StatusIsFatal()) return 0.0; |
| switch (m_encodingType) { |
| case k1X: |
| return 1.0; |
| case k2X: |
| return 0.5; |
| case k4X: |
| return 0.25; |
| default: |
| return 0.0; |
| } |
| } |
| |
| /** |
| * Get the distance the robot has driven since the last reset. |
| * |
| * @return The distance driven since the last reset as scaled by the value from |
| * SetDistancePerPulse(). |
| */ |
| double Encoder::GetDistance() const { |
| if (StatusIsFatal()) return 0.0; |
| return GetRaw() * DecodingScaleFactor() * m_distancePerPulse; |
| } |
| |
| /** |
| * Get the current rate of the encoder. |
| * Units are distance per second as scaled by the value from |
| * SetDistancePerPulse(). |
| * |
| * @return The current rate of the encoder. |
| */ |
| double Encoder::GetRate() const { |
| if (StatusIsFatal()) return 0.0; |
| return (m_distancePerPulse / GetPeriod()); |
| } |
| |
| /** |
| * Set the minimum rate of the device before the hardware reports it stopped. |
| * |
| * @param minRate The minimum rate. The units are in distance per second as |
| * scaled by the value from SetDistancePerPulse(). |
| */ |
| void Encoder::SetMinRate(double minRate) { |
| if (StatusIsFatal()) return; |
| SetMaxPeriod(m_distancePerPulse / minRate); |
| } |
| |
| /** |
| * Set the distance per pulse for this encoder. |
| * This sets the multiplier used to determine the distance driven based on the |
| * count value |
| * from the encoder. |
| * Do not include the decoding type in this scale. The library already |
| * compensates for the decoding type. |
| * Set this value based on the encoder's rated Pulses per Revolution and |
| * factor in gearing reductions following the encoder shaft. |
| * This distance can be in any units you like, linear or angular. |
| * |
| * @param distancePerPulse The scale factor that will be used to convert pulses |
| * to useful units. |
| */ |
| void Encoder::SetDistancePerPulse(double distancePerPulse) { |
| if (StatusIsFatal()) return; |
| m_distancePerPulse = distancePerPulse; |
| } |
| |
| /** |
| * Set the direction sensing for this encoder. |
| * This sets the direction sensing on the encoder so that it could count in the |
| * correct |
| * software direction regardless of the mounting. |
| * @param reverseDirection true if the encoder direction should be reversed |
| */ |
| void Encoder::SetReverseDirection(bool reverseDirection) { |
| if (StatusIsFatal()) return; |
| if (m_counter) { |
| m_counter->SetReverseDirection(reverseDirection); |
| } else { |
| int32_t status = 0; |
| setEncoderReverseDirection(m_encoder, reverseDirection, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| } |
| } |
| |
| /** |
| * Set the Samples to Average which specifies the number of samples of the timer |
| * to |
| * average when calculating the period. Perform averaging to account for |
| * mechanical imperfections or as oversampling to increase resolution. |
| * @param samplesToAverage The number of samples to average from 1 to 127. |
| */ |
| void Encoder::SetSamplesToAverage(int samplesToAverage) { |
| if (samplesToAverage < 1 || samplesToAverage > 127) { |
| wpi_setWPIErrorWithContext( |
| ParameterOutOfRange, |
| "Average counter values must be between 1 and 127"); |
| } |
| int32_t status = 0; |
| switch (m_encodingType) { |
| case k4X: |
| setEncoderSamplesToAverage(m_encoder, samplesToAverage, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| break; |
| case k1X: |
| case k2X: |
| m_counter->SetSamplesToAverage(samplesToAverage); |
| break; |
| } |
| } |
| |
| /** |
| * Get the Samples to Average which specifies the number of samples of the timer |
| * to |
| * average when calculating the period. Perform averaging to account for |
| * mechanical imperfections or as oversampling to increase resolution. |
| * @return SamplesToAverage The number of samples being averaged (from 1 to 127) |
| */ |
| int Encoder::GetSamplesToAverage() const { |
| int result = 1; |
| int32_t status = 0; |
| switch (m_encodingType) { |
| case k4X: |
| result = getEncoderSamplesToAverage(m_encoder, &status); |
| wpi_setErrorWithContext(status, getHALErrorMessage(status)); |
| break; |
| case k1X: |
| case k2X: |
| result = m_counter->GetSamplesToAverage(); |
| break; |
| } |
| return result; |
| } |
| |
| /** |
| * Implement the PIDSource interface. |
| * |
| * @return The current value of the selected source parameter. |
| */ |
| double Encoder::PIDGet() { |
| if (StatusIsFatal()) return 0.0; |
| switch (GetPIDSourceType()) { |
| case PIDSourceType::kDisplacement: |
| return GetDistance(); |
| case PIDSourceType::kRate: |
| return GetRate(); |
| default: |
| return 0.0; |
| } |
| } |
| |
| /** |
| * Set the index source for the encoder. When this source is activated, the |
| * encoder count automatically resets. |
| * |
| * @param channel A DIO channel to set as the encoder index |
| * @param type The state that will cause the encoder to reset |
| */ |
| void Encoder::SetIndexSource(uint32_t channel, Encoder::IndexingType type) { |
| int32_t status = 0; |
| bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge); |
| bool edgeSensitive = |
| (type == kResetOnFallingEdge) || (type == kResetOnRisingEdge); |
| |
| setEncoderIndexSource(m_encoder, channel, false, activeHigh, edgeSensitive, |
| &status); |
| wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status)); |
| } |
| |
| /** |
| * Set the index source for the encoder. When this source is activated, the |
| * encoder count automatically resets. |
| * |
| * @param channel A digital source to set as the encoder index |
| * @param type The state that will cause the encoder to reset |
| */ |
| DEPRECATED("Use pass-by-reference instead.") |
| void Encoder::SetIndexSource(DigitalSource *source, |
| Encoder::IndexingType type) { |
| SetIndexSource(*source, type); |
| } |
| |
| /** |
| * Set the index source for the encoder. When this source is activated, the |
| * encoder count automatically resets. |
| * |
| * @param channel A digital source to set as the encoder index |
| * @param type The state that will cause the encoder to reset |
| */ |
| void Encoder::SetIndexSource(const DigitalSource &source, |
| Encoder::IndexingType type) { |
| int32_t status = 0; |
| bool activeHigh = (type == kResetWhileHigh) || (type == kResetOnRisingEdge); |
| bool edgeSensitive = |
| (type == kResetOnFallingEdge) || (type == kResetOnRisingEdge); |
| |
| setEncoderIndexSource(m_encoder, source.GetChannelForRouting(), |
| source.GetAnalogTriggerForRouting(), activeHigh, |
| edgeSensitive, &status); |
| wpi_setGlobalErrorWithContext(status, getHALErrorMessage(status)); |
| } |
| |
| void Encoder::UpdateTable() { |
| if (m_table != nullptr) { |
| m_table->PutNumber("Speed", GetRate()); |
| m_table->PutNumber("Distance", GetDistance()); |
| m_table->PutNumber("Distance per Tick", m_distancePerPulse); |
| } |
| } |
| |
| void Encoder::StartLiveWindowMode() {} |
| |
| void Encoder::StopLiveWindowMode() {} |
| |
| std::string Encoder::GetSmartDashboardType() const { |
| if (m_encodingType == k4X) |
| return "Quadrature Encoder"; |
| else |
| return "Encoder"; |
| } |
| |
| void Encoder::InitTable(std::shared_ptr<ITable> subTable) { |
| m_table = subTable; |
| UpdateTable(); |
| } |
| |
| std::shared_ptr<ITable> Encoder::GetTable() const { return m_table; } |