blob: 56e68e1ec1466e00d3512d13effc8e1260888966 [file] [log] [blame]
/**
* @brief CAN TALON SRX driver.
*
* The TALON SRX is designed to instrument all runtime signals periodically. The default periods are chosen to support 16 TALONs
* with 10ms update rate for control (throttle or setpoint). However these can be overridden with SetStatusFrameRate. @see SetStatusFrameRate
* The getters for these unsolicited signals are auto generated at the bottom of this module.
*
* Likewise most control signals are sent periodically using the fire-and-forget CAN API.
* The setters for these unsolicited signals are auto generated at the bottom of this module.
*
* Signals that are not available in an unsolicited fashion are the Close Loop gains.
* For teams that have a single profile for their TALON close loop they can use either the webpage to configure their TALONs once
* or set the PIDF,Izone,CloseLoopRampRate,etc... once in the robot application. These parameters are saved to flash so once they are
* loaded in the TALON, they will persist through power cycles and mode changes.
*
* For teams that have one or two profiles to switch between, they can use the same strategy since there are two slots to choose from
* and the ProfileSlotSelect is periodically sent in the 10 ms control frame.
*
* For teams that require changing gains frequently, they can use the soliciting API to get and set those parameters. Most likely
* they will only need to set them in a periodic fashion as a function of what motion the application is attempting.
* If this API is used, be mindful of the CAN utilization reported in the driver station.
*
* If calling application has used the config routines to configure the selected feedback sensor, then all positions are measured in
* floating point precision rotations. All sensor velocities are specified in floating point precision RPM.
* @see ConfigPotentiometerTurns
* @see ConfigEncoderCodesPerRev
* HOWEVER, if calling application has not called the config routine for selected feedback sensor, then all getters/setters for
* position/velocity use the native engineering units of the Talon SRX firm (just like in 2015). Signals explained below.
*
* Encoder position is measured in encoder edges. Every edge is counted (similar to roboRIO 4X mode).
* Analog position is 10 bits, meaning 1024 ticks per rotation (0V => 3.3V).
* Use SetFeedbackDeviceSelect to select which sensor type you need. Once you do that you can use GetSensorPosition()
* and GetSensorVelocity(). These signals are updated on CANBus every 20ms (by default).
* If a relative sensor is selected, you can zero (or change the current value) using SetSensorPosition.
*
* Analog Input and quadrature position (and velocity) are also explicitly reported in GetEncPosition, GetEncVel, GetAnalogInWithOv, GetAnalogInVel.
* These signals are available all the time, regardless of what sensor is selected at a rate of 100ms. This allows easy instrumentation
* for "in the pits" checking of all sensors regardless of modeselect. The 100ms rate is overridable for teams who want to acquire sensor
* data for processing, not just instrumentation. Or just select the sensor using SetFeedbackDeviceSelect to get it at 20ms.
*
* Velocity is in position ticks / 100ms.
*
* All output units are in respect to duty cycle (throttle) which is -1023(full reverse) to +1023 (full forward).
* This includes demand (which specifies duty cycle when in duty cycle mode) and rampRamp, which is in throttle units per 10ms (if nonzero).
*
* Pos and velocity close loops are calc'd as
* err = target - posOrVel.
* iErr += err;
* if( (IZone!=0) and abs(err) > IZone)
* ClearIaccum()
* output = P X err + I X iErr + D X dErr + F X target
* dErr = err - lastErr
* P, I,and D gains are always positive. F can be negative.
* Motor direction can be reversed using SetRevMotDuringCloseLoopEn if sensor and motor are out of phase.
* Similarly feedback sensor can also be reversed (multiplied by -1) if you prefer the sensor to be inverted.
*
* P gain is specified in throttle per error tick. For example, a value of 102 is ~9.9% (which is 102/1023) throttle per 1
* ADC unit(10bit) or 1 quadrature encoder edge depending on selected sensor.
*
* I gain is specified in throttle per integrated error. For example, a value of 10 equates to ~0.99% (which is 10/1023)
* for each accumulated ADC unit(10bit) or 1 quadrature encoder edge depending on selected sensor.
* Close loop and integral accumulator runs every 1ms.
*
* D gain is specified in throttle per derivative error. For example a value of 102 equates to ~9.9% (which is 102/1023)
* per change of 1 unit (ADC or encoder) per ms.
*
* I Zone is specified in the same units as sensor position (ADC units or quadrature edges). If pos/vel error is outside of
* this value, the integrated error will auto-clear...
* if( (IZone!=0) and abs(err) > IZone)
* ClearIaccum()
* ...this is very useful in preventing integral windup and is highly recommended if using full PID to keep stability low.
*
* CloseLoopRampRate is in throttle units per 1ms. Set to zero to disable ramping.
* Works the same as RampThrottle but only is in effect when a close loop mode and profile slot is selected.
*
* auto generated using spreadsheet and WpiClassGen.csproj
* @link https://docs.google.com/spreadsheets/d/1OU_ZV7fZLGYUQ-Uhc8sVAmUmWTlT8XBFYK8lfjg_tac/edit#gid=1766046967
*/
#include "HAL/CanTalonSRX.h"
#include "FRC_NetworkCommunication/CANSessionMux.h" //CAN Comm
#include <string.h> // memset
#include <unistd.h> // usleep
#define STATUS_1 0x02041400
#define STATUS_2 0x02041440
#define STATUS_3 0x02041480
#define STATUS_4 0x020414C0
#define STATUS_5 0x02041500
#define STATUS_6 0x02041540
#define STATUS_7 0x02041580
#define STATUS_8 0x020415C0
#define CONTROL_1 0x02040000
#define CONTROL_2 0x02040040
#define CONTROL_3 0x02040080
#define EXPECTED_RESPONSE_TIMEOUT_MS (200)
#define GET_STATUS1() CtreCanNode::recMsg<TALON_Status_1_General_10ms_t > rx = GetRx<TALON_Status_1_General_10ms_t>(STATUS_1 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define GET_STATUS2() CtreCanNode::recMsg<TALON_Status_2_Feedback_20ms_t > rx = GetRx<TALON_Status_2_Feedback_20ms_t>(STATUS_2 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define GET_STATUS3() CtreCanNode::recMsg<TALON_Status_3_Enc_100ms_t > rx = GetRx<TALON_Status_3_Enc_100ms_t>(STATUS_3 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define GET_STATUS4() CtreCanNode::recMsg<TALON_Status_4_AinTempVbat_100ms_t> rx = GetRx<TALON_Status_4_AinTempVbat_100ms_t>(STATUS_4 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define GET_STATUS5() CtreCanNode::recMsg<TALON_Status_5_Startup_OneShot_t > rx = GetRx<TALON_Status_5_Startup_OneShot_t>(STATUS_5 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define GET_STATUS6() CtreCanNode::recMsg<TALON_Status_6_Eol_t > rx = GetRx<TALON_Status_6_Eol_t>(STATUS_6 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define GET_STATUS7() CtreCanNode::recMsg<TALON_Status_7_Debug_200ms_t > rx = GetRx<TALON_Status_7_Debug_200ms_t>(STATUS_7 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define GET_STATUS8() CtreCanNode::recMsg<TALON_Status_8_PulseWid_100ms_t > rx = GetRx<TALON_Status_8_PulseWid_100ms_t>(STATUS_8 | GetDeviceNumber(), EXPECTED_RESPONSE_TIMEOUT_MS)
#define PARAM_REQUEST 0x02041800
#define PARAM_RESPONSE 0x02041840
#define PARAM_SET 0x02041880
const int kParamArbIdValue = PARAM_RESPONSE;
const int kParamArbIdMask = 0xFFFFFFFF;
const double FLOAT_TO_FXP_10_22 = (double)0x400000;
const double FXP_TO_FLOAT_10_22 = 0.0000002384185791015625;
const double FLOAT_TO_FXP_0_8 = (double)0x100;
const double FXP_TO_FLOAT_0_8 = 0.00390625;
/* encoder/decoders */
/** control */
typedef struct _TALON_Control_1_General_10ms_t {
unsigned TokenH:8;
unsigned TokenL:8;
unsigned DemandH:8;
unsigned DemandM:8;
unsigned DemandL:8;
unsigned ProfileSlotSelect:1;
unsigned FeedbackDeviceSelect:4;
unsigned OverrideLimitSwitchEn:3;
unsigned RevFeedbackSensor:1;
unsigned RevMotDuringCloseLoopEn:1;
unsigned OverrideBrakeType:2;
unsigned ModeSelect:4;
unsigned RampThrottle:8;
} TALON_Control_1_General_10ms_t ;
typedef struct _TALON_Control_2_Rates_OneShot_t {
unsigned Status1Ms:8;
unsigned Status2Ms:8;
unsigned Status3Ms:8;
unsigned Status4Ms:8;
unsigned StatusPulWidMs:8; // TALON_Status_8_PulseWid_100ms_t
} TALON_Control_2_Rates_OneShot_t ;
typedef struct _TALON_Control_3_ClearFlags_OneShot_t {
unsigned ZeroFeedbackSensor:1;
unsigned ClearStickyFaults:1;
} TALON_Control_3_ClearFlags_OneShot_t ;
/** status */
typedef struct _TALON_Status_1_General_10ms_t {
unsigned CloseLoopErrH:8;
unsigned CloseLoopErrM:8;
unsigned CloseLoopErrL:8;
unsigned AppliedThrottle_h3:3;
unsigned Fault_RevSoftLim:1;
unsigned Fault_ForSoftLim:1;
unsigned TokLocked:1;
unsigned LimitSwitchClosedRev:1;
unsigned LimitSwitchClosedFor:1;
unsigned AppliedThrottle_l8:8;
unsigned ModeSelect_h1:1;
unsigned FeedbackDeviceSelect:4;
unsigned LimitSwitchEn:3;
unsigned Fault_HardwareFailure:1;
unsigned Fault_RevLim:1;
unsigned Fault_ForLim:1;
unsigned Fault_UnderVoltage:1;
unsigned Fault_OverTemp:1;
unsigned ModeSelect_b3:3;
unsigned TokenSeed:8;
} TALON_Status_1_General_10ms_t ;
typedef struct _TALON_Status_2_Feedback_20ms_t {
unsigned SensorPositionH:8;
unsigned SensorPositionM:8;
unsigned SensorPositionL:8;
unsigned SensorVelocityH:8;
unsigned SensorVelocityL:8;
unsigned Current_h8:8;
unsigned StckyFault_RevSoftLim:1;
unsigned StckyFault_ForSoftLim:1;
unsigned StckyFault_RevLim:1;
unsigned StckyFault_ForLim:1;
unsigned StckyFault_UnderVoltage:1;
unsigned StckyFault_OverTemp:1;
unsigned Current_l2:2;
unsigned reserved2:4;
unsigned VelDiv4:1;
unsigned PosDiv8:1;
unsigned ProfileSlotSelect:1;
unsigned BrakeIsEnabled:1;
} TALON_Status_2_Feedback_20ms_t ;
typedef struct _TALON_Status_3_Enc_100ms_t {
unsigned EncPositionH:8;
unsigned EncPositionM:8;
unsigned EncPositionL:8;
unsigned EncVelH:8;
unsigned EncVelL:8;
unsigned EncIndexRiseEventsH:8;
unsigned EncIndexRiseEventsL:8;
unsigned reserved:3;
unsigned VelDiv4:1;
unsigned PosDiv8:1;
unsigned QuadIdxpin:1;
unsigned QuadBpin:1;
unsigned QuadApin:1;
} TALON_Status_3_Enc_100ms_t ;
typedef struct _TALON_Status_4_AinTempVbat_100ms_t {
unsigned AnalogInWithOvH:8;
unsigned AnalogInWithOvM:8;
unsigned AnalogInWithOvL:8;
unsigned AnalogInVelH:8;
unsigned AnalogInVelL:8;
unsigned Temp:8;
unsigned BatteryV:8;
unsigned reserved:6;
unsigned VelDiv4:1;
unsigned PosDiv8:1;
} TALON_Status_4_AinTempVbat_100ms_t ;
typedef struct _TALON_Status_5_Startup_OneShot_t {
unsigned ResetCountH:8;
unsigned ResetCountL:8;
unsigned ResetFlagsH:8;
unsigned ResetFlagsL:8;
unsigned FirmVersH:8;
unsigned FirmVersL:8;
} TALON_Status_5_Startup_OneShot_t ;
typedef struct _TALON_Status_6_Eol_t {
unsigned currentAdcUncal_h2:2;
unsigned reserved1:5;
unsigned SpiCsPin_GadgeteerPin6:1;
unsigned currentAdcUncal_l8:8;
unsigned tempAdcUncal_h2:2;
unsigned reserved2:6;
unsigned tempAdcUncal_l8:8;
unsigned vbatAdcUncal_h2:2;
unsigned reserved3:6;
unsigned vbatAdcUncal_l8:8;
unsigned analogAdcUncal_h2:2;
unsigned reserved4:6;
unsigned analogAdcUncal_l8:8;
} TALON_Status_6_Eol_t ;
typedef struct _TALON_Status_7_Debug_200ms_t {
unsigned TokenizationFails_h8:8;
unsigned TokenizationFails_l8:8;
unsigned LastFailedToken_h8:8;
unsigned LastFailedToken_l8:8;
unsigned TokenizationSucceses_h8:8;
unsigned TokenizationSucceses_l8:8;
} TALON_Status_7_Debug_200ms_t ;
typedef struct _TALON_Status_8_PulseWid_100ms_t {
unsigned PulseWidPositionH:8;
unsigned PulseWidPositionM:8;
unsigned PulseWidPositionL:8;
unsigned reserved:6;
unsigned VelDiv4:1;
unsigned PosDiv8:1;
unsigned PeriodUsM8:8;
unsigned PeriodUsL8:8;
unsigned PulseWidVelH:8;
unsigned PulseWidVelL:8;
} TALON_Status_8_PulseWid_100ms_t ;
typedef struct _TALON_Param_Request_t {
unsigned ParamEnum:8;
} TALON_Param_Request_t ;
typedef struct _TALON_Param_Response_t {
unsigned ParamEnum:8;
unsigned ParamValueL:8;
unsigned ParamValueML:8;
unsigned ParamValueMH:8;
unsigned ParamValueH:8;
} TALON_Param_Response_t ;
CanTalonSRX::CanTalonSRX(int deviceNumber,int controlPeriodMs): CtreCanNode(deviceNumber), _can_h(0), _can_stat(0)
{
/* bound period to be within [1 ms,95 ms] */
if(controlPeriodMs < 1)
controlPeriodMs = 1;
else if(controlPeriodMs > 95)
controlPeriodMs = 95;
RegisterRx(STATUS_1 | (UINT8)deviceNumber );
RegisterRx(STATUS_2 | (UINT8)deviceNumber );
RegisterRx(STATUS_3 | (UINT8)deviceNumber );
RegisterRx(STATUS_4 | (UINT8)deviceNumber );
RegisterRx(STATUS_5 | (UINT8)deviceNumber );
RegisterRx(STATUS_6 | (UINT8)deviceNumber );
RegisterRx(STATUS_7 | (UINT8)deviceNumber );
RegisterTx(CONTROL_1 | (UINT8)deviceNumber, (UINT8)controlPeriodMs);
/* the only default param that is nonzero is limit switch.
* Default to using the flash settings. */
SetOverrideLimitSwitchEn(kLimitSwitchOverride_UseDefaultsFromFlash);
}
/* CanTalonSRX D'tor
*/
CanTalonSRX::~CanTalonSRX()
{
if (m_hasBeenMoved){
/* Another CANTalonSRX still exists, so
don't un-register the periodic control frame */
}else{
/* un-register the control frame so Talon is disabled */
RegisterTx(CONTROL_1 | (UINT8)GetDeviceNumber(), 0);
}
/* free the stream we used for SetParam/GetParamResponse */
if(_can_h){
FRC_NetworkCommunication_CANSessionMux_closeStreamSession(_can_h);
_can_h = 0;
}
}
void CanTalonSRX::OpenSessionIfNeedBe()
{
_can_stat = 0;
if (_can_h == 0) {
/* bit30 - bit8 must match $000002XX. Top bit is not masked to get remote frames */
FRC_NetworkCommunication_CANSessionMux_openStreamSession(&_can_h,kParamArbIdValue | GetDeviceNumber(), kParamArbIdMask, kMsgCapacity, &_can_stat);
if (_can_stat == 0) {
/* success */
} else {
/* something went wrong, try again later */
_can_h = 0;
}
}
}
void CanTalonSRX::ProcessStreamMessages()
{
if(0 == _can_h)
OpenSessionIfNeedBe();
/* process receive messages */
uint32_t i;
uint32_t messagesToRead = sizeof(_msgBuff) / sizeof(_msgBuff[0]);
uint32_t messagesRead = 0;
/* read out latest bunch of messages */
_can_stat = 0;
if (_can_h){
FRC_NetworkCommunication_CANSessionMux_readStreamSession(_can_h,_msgBuff, messagesToRead, &messagesRead, &_can_stat);
}
/* loop thru each message of interest */
for (i = 0; i < messagesRead; ++i) {
tCANStreamMessage * msg = _msgBuff + i;
if(msg->messageID == (PARAM_RESPONSE | GetDeviceNumber()) ){
TALON_Param_Response_t * paramResp = (TALON_Param_Response_t*)msg->data;
/* decode value */
int32_t val = paramResp->ParamValueH;
val <<= 8;
val |= paramResp->ParamValueMH;
val <<= 8;
val |= paramResp->ParamValueML;
val <<= 8;
val |= paramResp->ParamValueL;
/* save latest signal */
_sigs[paramResp->ParamEnum] = val;
}else{
int brkpthere = 42;
++brkpthere;
}
}
}
void CanTalonSRX::Set(double value)
{
if(value > 1)
value = 1;
else if(value < -1)
value = -1;
SetDemand(1023*value); /* must be within [-1023,1023] */
}
/*---------------------setters and getters that use the param request/response-------------*/
/**
* Send a one shot frame to set an arbitrary signal.
* Most signals are in the control frame so avoid using this API unless you have to.
* Use this api for...
* -A motor controller profile signal eProfileParam_XXXs. These are backed up in flash. If you are gain-scheduling then call this periodically.
* -Default brake and limit switch signals... eOnBoot_XXXs. Avoid doing this, use the override signals in the control frame.
* Talon will automatically send a PARAM_RESPONSE after the set, so GetParamResponse will catch the latest value after a couple ms.
*/
CTR_Code CanTalonSRX::SetParamRaw(unsigned paramEnum, int rawBits)
{
/* caller is using param API. Open session if it hasn'T been done. */
if(0 == _can_h)
OpenSessionIfNeedBe();
TALON_Param_Response_t frame;
memset(&frame,0,sizeof(frame));
frame.ParamEnum = paramEnum;
frame.ParamValueH = rawBits >> 0x18;
frame.ParamValueMH = rawBits >> 0x10;
frame.ParamValueML = rawBits >> 0x08;
frame.ParamValueL = rawBits;
int32_t status = 0;
FRC_NetworkCommunication_CANSessionMux_sendMessage(PARAM_SET | GetDeviceNumber(), (const uint8_t*)&frame, 5, 0, &status);
if(status)
return CTR_TxFailed;
return CTR_OKAY;
}
/**
* Checks cached CAN frames and updating solicited signals.
*/
CTR_Code CanTalonSRX::GetParamResponseRaw(unsigned paramEnum, int & rawBits)
{
CTR_Code retval = CTR_OKAY;
/* process received param events. We don't expect many since this API is not used often. */
ProcessStreamMessages();
/* grab the solicited signal value */
sigs_t::iterator i = _sigs.find(paramEnum);
if(i == _sigs.end()){
retval = CTR_SigNotUpdated;
}else{
rawBits = i->second;
}
return retval;
}
/**
* Asks TALON to immedietely respond with signal value. This API is only used for signals that are not sent periodically.
* This can be useful for reading params that rarely change like Limit Switch settings and PIDF values.
* @param param to request.
*/
CTR_Code CanTalonSRX::RequestParam(param_t paramEnum)
{
/* process received param events. We don't expect many since this API is not used often. */
ProcessStreamMessages();
TALON_Param_Request_t frame;
memset(&frame,0,sizeof(frame));
frame.ParamEnum = paramEnum;
int32_t status = 0;
FRC_NetworkCommunication_CANSessionMux_sendMessage(PARAM_REQUEST | GetDeviceNumber(), (const uint8_t*)&frame, 1, 0, &status);
if(status)
return CTR_TxFailed;
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetParam(param_t paramEnum, double value)
{
int32_t rawbits = 0;
switch(paramEnum){
case eProfileParamSlot0_P:/* unsigned 10.22 fixed pt value */
case eProfileParamSlot0_I:
case eProfileParamSlot0_D:
case eProfileParamSlot1_P:
case eProfileParamSlot1_I:
case eProfileParamSlot1_D:
{
uint32_t urawbits;
value = std::min(value,1023.0); /* bounds check doubles that are outside u10.22 */
value = std::max(value,0.0);
urawbits = value * FLOAT_TO_FXP_10_22; /* perform unsign arithmetic */
rawbits = urawbits; /* copy bits over. SetParamRaw just stuffs into CAN frame with no sense of signedness */
} break;
case eProfileParamSlot1_F: /* signed 10.22 fixed pt value */
case eProfileParamSlot0_F:
value = std::min(value, 512.0); /* bounds check doubles that are outside s10.22 */
value = std::max(value,-512.0);
rawbits = value * FLOAT_TO_FXP_10_22;
break;
case eProfileParamVcompRate: /* unsigned 0.8 fixed pt value volts per ms */
/* within [0,1) volts per ms.
Slowest ramp is 1/256 VperMilliSec or 3.072 seconds from 0-to-12V.
Fastest ramp is 255/256 VperMilliSec or 12.1ms from 0-to-12V.
*/
if(value <= 0){
/* negative or zero (disable), send raw value of zero */
rawbits = 0;
}else{
/* nonzero ramping */
rawbits = value * FLOAT_TO_FXP_0_8;
/* since whole part is cleared, cap to just under whole unit */
if(rawbits > (FLOAT_TO_FXP_0_8-1) )
rawbits = (FLOAT_TO_FXP_0_8-1);
/* since ramping is nonzero, cap to smallest ramp rate possible */
if(rawbits == 0){
/* caller is providing a nonzero ramp rate that's too small
to serialize, so cap to smallest possible */
rawbits = 1;
}
}
break;
default: /* everything else is integral */
rawbits = (int32_t)value;
break;
}
return SetParamRaw(paramEnum,rawbits);
}
CTR_Code CanTalonSRX::GetParamResponse(param_t paramEnum, double & value)
{
int32_t rawbits = 0;
CTR_Code retval = GetParamResponseRaw(paramEnum,rawbits);
switch(paramEnum){
case eProfileParamSlot0_P:/* 10.22 fixed pt value */
case eProfileParamSlot0_I:
case eProfileParamSlot0_D:
case eProfileParamSlot0_F:
case eProfileParamSlot1_P:
case eProfileParamSlot1_I:
case eProfileParamSlot1_D:
case eProfileParamSlot1_F:
case eCurrent:
case eTemp:
case eBatteryV:
value = ((double)rawbits) * FXP_TO_FLOAT_10_22;
break;
case eProfileParamVcompRate:
value = ((double)rawbits) * FXP_TO_FLOAT_0_8;
break;
default: /* everything else is integral */
value = (double)rawbits;
break;
}
return retval;
}
CTR_Code CanTalonSRX::GetParamResponseInt32(param_t paramEnum, int & value)
{
double dvalue = 0;
CTR_Code retval = GetParamResponse(paramEnum, dvalue);
value = (int32_t)dvalue;
return retval;
}
/*----- getters and setters that use param request/response. These signals are backed up in flash and will survive a power cycle. ---------*/
/*----- If your application requires changing these values consider using both slots and switch between slot0 <=> slot1. ------------------*/
/*----- If your application requires changing these signals frequently then it makes sense to leverage this API. --------------------------*/
/*----- Getters don't block, so it may require several calls to get the latest value. --------------------------*/
CTR_Code CanTalonSRX::SetPgain(unsigned slotIdx,double gain)
{
if(slotIdx == 0)
return SetParam(eProfileParamSlot0_P, gain);
return SetParam(eProfileParamSlot1_P, gain);
}
CTR_Code CanTalonSRX::SetIgain(unsigned slotIdx,double gain)
{
if(slotIdx == 0)
return SetParam(eProfileParamSlot0_I, gain);
return SetParam(eProfileParamSlot1_I, gain);
}
CTR_Code CanTalonSRX::SetDgain(unsigned slotIdx,double gain)
{
if(slotIdx == 0)
return SetParam(eProfileParamSlot0_D, gain);
return SetParam(eProfileParamSlot1_D, gain);
}
CTR_Code CanTalonSRX::SetFgain(unsigned slotIdx,double gain)
{
if(slotIdx == 0)
return SetParam(eProfileParamSlot0_F, gain);
return SetParam(eProfileParamSlot1_F, gain);
}
CTR_Code CanTalonSRX::SetIzone(unsigned slotIdx,int zone)
{
if(slotIdx == 0)
return SetParam(eProfileParamSlot0_IZone, zone);
return SetParam(eProfileParamSlot1_IZone, zone);
}
CTR_Code CanTalonSRX::SetCloseLoopRampRate(unsigned slotIdx,int closeLoopRampRate)
{
if(slotIdx == 0)
return SetParam(eProfileParamSlot0_CloseLoopRampRate, closeLoopRampRate);
return SetParam(eProfileParamSlot1_CloseLoopRampRate, closeLoopRampRate);
}
CTR_Code CanTalonSRX::SetVoltageCompensationRate(double voltagePerMs)
{
return SetParam(eProfileParamVcompRate, voltagePerMs);
}
CTR_Code CanTalonSRX::GetPgain(unsigned slotIdx,double & gain)
{
if(slotIdx == 0)
return GetParamResponse(eProfileParamSlot0_P, gain);
return GetParamResponse(eProfileParamSlot1_P, gain);
}
CTR_Code CanTalonSRX::GetIgain(unsigned slotIdx,double & gain)
{
if(slotIdx == 0)
return GetParamResponse(eProfileParamSlot0_I, gain);
return GetParamResponse(eProfileParamSlot1_I, gain);
}
CTR_Code CanTalonSRX::GetDgain(unsigned slotIdx,double & gain)
{
if(slotIdx == 0)
return GetParamResponse(eProfileParamSlot0_D, gain);
return GetParamResponse(eProfileParamSlot1_D, gain);
}
CTR_Code CanTalonSRX::GetFgain(unsigned slotIdx,double & gain)
{
if(slotIdx == 0)
return GetParamResponse(eProfileParamSlot0_F, gain);
return GetParamResponse(eProfileParamSlot1_F, gain);
}
CTR_Code CanTalonSRX::GetIzone(unsigned slotIdx,int & zone)
{
if(slotIdx == 0)
return GetParamResponseInt32(eProfileParamSlot0_IZone, zone);
return GetParamResponseInt32(eProfileParamSlot1_IZone, zone);
}
CTR_Code CanTalonSRX::GetCloseLoopRampRate(unsigned slotIdx,int & closeLoopRampRate)
{
if(slotIdx == 0)
return GetParamResponseInt32(eProfileParamSlot0_CloseLoopRampRate, closeLoopRampRate);
return GetParamResponseInt32(eProfileParamSlot1_CloseLoopRampRate, closeLoopRampRate);
}
CTR_Code CanTalonSRX::GetVoltageCompensationRate(double & voltagePerMs)
{
return GetParamResponse(eProfileParamVcompRate, voltagePerMs);
}
CTR_Code CanTalonSRX::SetSensorPosition(int pos)
{
return SetParam(eSensorPosition, pos);
}
CTR_Code CanTalonSRX::SetForwardSoftLimit(int forwardLimit)
{
return SetParam(eProfileParamSoftLimitForThreshold, forwardLimit);
}
CTR_Code CanTalonSRX::SetReverseSoftLimit(int reverseLimit)
{
return SetParam(eProfileParamSoftLimitRevThreshold, reverseLimit);
}
CTR_Code CanTalonSRX::SetForwardSoftEnable(int enable)
{
return SetParam(eProfileParamSoftLimitForEnable, enable);
}
CTR_Code CanTalonSRX::SetReverseSoftEnable(int enable)
{
return SetParam(eProfileParamSoftLimitRevEnable, enable);
}
CTR_Code CanTalonSRX::GetForwardSoftLimit(int & forwardLimit)
{
return GetParamResponseInt32(eProfileParamSoftLimitForThreshold, forwardLimit);
}
CTR_Code CanTalonSRX::GetReverseSoftLimit(int & reverseLimit)
{
return GetParamResponseInt32(eProfileParamSoftLimitRevThreshold, reverseLimit);
}
CTR_Code CanTalonSRX::GetForwardSoftEnable(int & enable)
{
return GetParamResponseInt32(eProfileParamSoftLimitForEnable, enable);
}
CTR_Code CanTalonSRX::GetReverseSoftEnable(int & enable)
{
return GetParamResponseInt32(eProfileParamSoftLimitRevEnable, enable);
}
/**
* Change the periodMs of a TALON's status frame. See kStatusFrame_* enums for what's available.
*/
CTR_Code CanTalonSRX::SetStatusFrameRate(unsigned frameEnum, unsigned periodMs)
{
CTR_Code retval = CTR_OKAY;
int32_t paramEnum = 0;
/* bounds check the period */
if(periodMs < 1)
periodMs = 1;
else if (periodMs > 255)
periodMs = 255;
uint8_t period = (uint8_t)periodMs;
/* lookup the correct param enum based on what frame to rate-change */
switch(frameEnum){
case kStatusFrame_General:
paramEnum = eStatus1FrameRate;
break;
case kStatusFrame_Feedback:
paramEnum = eStatus2FrameRate;
break;
case kStatusFrame_Encoder:
paramEnum = eStatus3FrameRate;
break;
case kStatusFrame_AnalogTempVbat:
paramEnum = eStatus4FrameRate;
break;
case kStatusFrame_PulseWidthMeas:
paramEnum = eStatus8FrameRate;
break;
default:
/* caller's request is not support, return an error code */
retval = CTR_InvalidParamValue;
break;
}
/* if lookup was succesful, send set-request out */
if(retval == CTR_OKAY){
/* paramEnum is updated, sent it out */
retval = SetParamRaw(paramEnum, period);
}
return retval;
}
/**
* Clear all sticky faults in TALON.
*/
CTR_Code CanTalonSRX::ClearStickyFaults()
{
int32_t status = 0;
/* build request frame */
TALON_Control_3_ClearFlags_OneShot_t frame;
memset(&frame,0,sizeof(frame));
frame.ClearStickyFaults = 1;
FRC_NetworkCommunication_CANSessionMux_sendMessage(CONTROL_3 | GetDeviceNumber(), (const uint8_t*)&frame, sizeof(frame), 0, &status);
if(status)
return CTR_TxFailed;
return CTR_OKAY;
}
/*------------------------ auto generated. This API is optimal since it uses the fire-and-forget CAN interface ----------------------*/
/*------------------------ These signals should cover the majority of all use cases. ----------------------------------*/
CTR_Code CanTalonSRX::GetFault_OverTemp(int &param)
{
GET_STATUS1();
param = rx->Fault_OverTemp;
return rx.err;
}
CTR_Code CanTalonSRX::GetFault_UnderVoltage(int &param)
{
GET_STATUS1();
param = rx->Fault_UnderVoltage;
return rx.err;
}
CTR_Code CanTalonSRX::GetFault_ForLim(int &param)
{
GET_STATUS1();
param = rx->Fault_ForLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetFault_RevLim(int &param)
{
GET_STATUS1();
param = rx->Fault_RevLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetFault_HardwareFailure(int &param)
{
GET_STATUS1();
param = rx->Fault_HardwareFailure;
return rx.err;
}
CTR_Code CanTalonSRX::GetFault_ForSoftLim(int &param)
{
GET_STATUS1();
param = rx->Fault_ForSoftLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetFault_RevSoftLim(int &param)
{
GET_STATUS1();
param = rx->Fault_RevSoftLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetStckyFault_OverTemp(int &param)
{
GET_STATUS2();
param = rx->StckyFault_OverTemp;
return rx.err;
}
CTR_Code CanTalonSRX::GetStckyFault_UnderVoltage(int &param)
{
GET_STATUS2();
param = rx->StckyFault_UnderVoltage;
return rx.err;
}
CTR_Code CanTalonSRX::GetStckyFault_ForLim(int &param)
{
GET_STATUS2();
param = rx->StckyFault_ForLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetStckyFault_RevLim(int &param)
{
GET_STATUS2();
param = rx->StckyFault_RevLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetStckyFault_ForSoftLim(int &param)
{
GET_STATUS2();
param = rx->StckyFault_ForSoftLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetStckyFault_RevSoftLim(int &param)
{
GET_STATUS2();
param = rx->StckyFault_RevSoftLim;
return rx.err;
}
CTR_Code CanTalonSRX::GetAppliedThrottle(int &param)
{
GET_STATUS1();
int32_t raw = 0;
raw |= rx->AppliedThrottle_h3;
raw <<= 8;
raw |= rx->AppliedThrottle_l8;
raw <<= (32-11); /* sign extend */
raw >>= (32-11); /* sign extend */
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetCloseLoopErr(int &param)
{
GET_STATUS1();
int32_t raw = 0;
raw |= rx->CloseLoopErrH;
raw <<= 8;
raw |= rx->CloseLoopErrM;
raw <<= 8;
raw |= rx->CloseLoopErrL;
raw <<= (32-24); /* sign extend */
raw >>= (32-24); /* sign extend */
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetFeedbackDeviceSelect(int &param)
{
GET_STATUS1();
param = rx->FeedbackDeviceSelect;
return rx.err;
}
CTR_Code CanTalonSRX::GetModeSelect(int &param)
{
GET_STATUS1();
uint32_t raw = 0;
raw |= rx->ModeSelect_h1;
raw <<= 3;
raw |= rx->ModeSelect_b3;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetLimitSwitchEn(int &param)
{
GET_STATUS1();
param = rx->LimitSwitchEn;
return rx.err;
}
CTR_Code CanTalonSRX::GetLimitSwitchClosedFor(int &param)
{
GET_STATUS1();
param = rx->LimitSwitchClosedFor;
return rx.err;
}
CTR_Code CanTalonSRX::GetLimitSwitchClosedRev(int &param)
{
GET_STATUS1();
param = rx->LimitSwitchClosedRev;
return rx.err;
}
CTR_Code CanTalonSRX::GetSensorPosition(int &param)
{
GET_STATUS2();
int32_t raw = 0;
raw |= rx->SensorPositionH;
raw <<= 8;
raw |= rx->SensorPositionM;
raw <<= 8;
raw |= rx->SensorPositionL;
raw <<= (32-24); /* sign extend */
raw >>= (32-24); /* sign extend */
if(rx->PosDiv8)
raw *= 8;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetSensorVelocity(int &param)
{
GET_STATUS2();
int32_t raw = 0;
raw |= rx->SensorVelocityH;
raw <<= 8;
raw |= rx->SensorVelocityL;
raw <<= (32-16); /* sign extend */
raw >>= (32-16); /* sign extend */
if(rx->VelDiv4)
raw *= 4;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetCurrent(double &param)
{
GET_STATUS2();
uint32_t raw = 0;
raw |= rx->Current_h8;
raw <<= 2;
raw |= rx->Current_l2;
param = (double)raw * 0.125 + 0;
return rx.err;
}
CTR_Code CanTalonSRX::GetBrakeIsEnabled(int &param)
{
GET_STATUS2();
param = rx->BrakeIsEnabled;
return rx.err;
}
CTR_Code CanTalonSRX::GetEncPosition(int &param)
{
GET_STATUS3();
int32_t raw = 0;
raw |= rx->EncPositionH;
raw <<= 8;
raw |= rx->EncPositionM;
raw <<= 8;
raw |= rx->EncPositionL;
raw <<= (32-24); /* sign extend */
raw >>= (32-24); /* sign extend */
if(rx->PosDiv8)
raw *= 8;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetEncVel(int &param)
{
GET_STATUS3();
int32_t raw = 0;
raw |= rx->EncVelH;
raw <<= 8;
raw |= rx->EncVelL;
raw <<= (32-16); /* sign extend */
raw >>= (32-16); /* sign extend */
if(rx->VelDiv4)
raw *= 4;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetEncIndexRiseEvents(int &param)
{
GET_STATUS3();
uint32_t raw = 0;
raw |= rx->EncIndexRiseEventsH;
raw <<= 8;
raw |= rx->EncIndexRiseEventsL;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetQuadApin(int &param)
{
GET_STATUS3();
param = rx->QuadApin;
return rx.err;
}
CTR_Code CanTalonSRX::GetQuadBpin(int &param)
{
GET_STATUS3();
param = rx->QuadBpin;
return rx.err;
}
CTR_Code CanTalonSRX::GetQuadIdxpin(int &param)
{
GET_STATUS3();
param = rx->QuadIdxpin;
return rx.err;
}
CTR_Code CanTalonSRX::GetAnalogInWithOv(int &param)
{
GET_STATUS4();
int32_t raw = 0;
raw |= rx->AnalogInWithOvH;
raw <<= 8;
raw |= rx->AnalogInWithOvM;
raw <<= 8;
raw |= rx->AnalogInWithOvL;
raw <<= (32-24); /* sign extend */
raw >>= (32-24); /* sign extend */
if(rx->PosDiv8)
raw *= 8;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetAnalogInVel(int &param)
{
GET_STATUS4();
int32_t raw = 0;
raw |= rx->AnalogInVelH;
raw <<= 8;
raw |= rx->AnalogInVelL;
raw <<= (32-16); /* sign extend */
raw >>= (32-16); /* sign extend */
if(rx->VelDiv4)
raw *= 4;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetTemp(double &param)
{
GET_STATUS4();
uint32_t raw = rx->Temp;
param = (double)raw * 0.6451612903 + -50;
return rx.err;
}
CTR_Code CanTalonSRX::GetBatteryV(double &param)
{
GET_STATUS4();
uint32_t raw = rx->BatteryV;
param = (double)raw * 0.05 + 4;
return rx.err;
}
CTR_Code CanTalonSRX::GetResetCount(int &param)
{
GET_STATUS5();
uint32_t raw = 0;
raw |= rx->ResetCountH;
raw <<= 8;
raw |= rx->ResetCountL;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetResetFlags(int &param)
{
GET_STATUS5();
uint32_t raw = 0;
raw |= rx->ResetFlagsH;
raw <<= 8;
raw |= rx->ResetFlagsL;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetFirmVers(int &param)
{
GET_STATUS5();
uint32_t raw = 0;
raw |= rx->FirmVersH;
raw <<= 8;
raw |= rx->FirmVersL;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::SetDemand(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->DemandH = param>>16;
toFill->DemandM = param>>8;
toFill->DemandL = param>>0;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetOverrideLimitSwitchEn(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->OverrideLimitSwitchEn = param;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetFeedbackDeviceSelect(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->FeedbackDeviceSelect = param;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetRevMotDuringCloseLoopEn(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->RevMotDuringCloseLoopEn = param;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetOverrideBrakeType(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->OverrideBrakeType = param;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetModeSelect(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->ModeSelect = param;
FlushTx(toFill);
return CTR_OKAY;
}
/**
* @param modeSelect selects which mode.
* @param demand setpt or throttle or masterId to follow.
* @return error code, 0 iff successful.
* This function has the advantage of atomically setting mode and demand.
*/
CTR_Code CanTalonSRX::SetModeSelect(int modeSelect,int demand)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->ModeSelect = modeSelect;
toFill->DemandH = demand>>16;
toFill->DemandM = demand>>8;
toFill->DemandL = demand>>0;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetProfileSlotSelect(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->ProfileSlotSelect = param;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetRampThrottle(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->RampThrottle = param;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::SetRevFeedbackSensor(int param)
{
CtreCanNode::txTask<TALON_Control_1_General_10ms_t> toFill = GetTx<TALON_Control_1_General_10ms_t>(CONTROL_1 | GetDeviceNumber());
if (toFill.IsEmpty()) return CTR_UnexpectedArbId;
toFill->RevFeedbackSensor = param ? 1 : 0;
FlushTx(toFill);
return CTR_OKAY;
}
CTR_Code CanTalonSRX::GetPulseWidthPosition(int &param)
{
GET_STATUS8();
int32_t raw = 0;
raw |= rx->PulseWidPositionH;
raw <<= 8;
raw |= rx->PulseWidPositionM;
raw <<= 8;
raw |= rx->PulseWidPositionL;
raw <<= (32-24); /* sign extend */
raw >>= (32-24); /* sign extend */
if(rx->PosDiv8)
raw *= 8;
param = (int)raw;
return rx.err;
}
CTR_Code CanTalonSRX::GetPulseWidthVelocity(int &param)
{
GET_STATUS8();
int32_t raw = 0;
raw |= rx->PulseWidVelH;
raw <<= 8;
raw |= rx->PulseWidVelL;
raw <<= (32-16); /* sign extend */
raw >>= (32-16); /* sign extend */
if(rx->VelDiv4)
raw *= 4;
param = (int)raw;
return rx.err;
}
/**
* @param param [out] Rise to rise timeperiod in microseconds.
*/
CTR_Code CanTalonSRX::GetPulseWidthRiseToRiseUs(int &param)
{
GET_STATUS8();
uint32_t raw = 0;
raw |= rx->PeriodUsM8;
raw <<= 8;
raw |= rx->PeriodUsL8;
param = (int)raw;
return rx.err;
}
/**
* @param param [out] Rise to fall time period in microseconds.
*/
CTR_Code CanTalonSRX::GetPulseWidthRiseToFallUs(int &param)
{
int temp = 0;
int periodUs = 0;
/* first grab our 12.12 position */
CTR_Code retval1 = GetPulseWidthPosition(temp);
/* mask off number of turns */
temp &= 0xFFF;
/* next grab the waveform period. This value
* will be zero if we stop getting pulses **/
CTR_Code retval2 = GetPulseWidthRiseToRiseUs(periodUs);
/* now we have 0.12 position that is scaled to the waveform period.
Use fixed pt multiply to scale our 0.16 period into us.*/
param = (temp * periodUs) / BIT12;
/* pass the worst error code to caller.
Assume largest value is the most pressing error code.*/
return (CTR_Code)std::max((int)retval1, (int)retval2);
}
CTR_Code CanTalonSRX::IsPulseWidthSensorPresent(int &param)
{
int periodUs = 0;
CTR_Code retval = GetPulseWidthRiseToRiseUs(periodUs);
/* if a nonzero period is present, we are getting good pules.
Otherwise the sensor is not present. */
if(periodUs != 0)
param = 1;
else
param = 0;
return retval;
}
//------------------ C interface --------------------------------------------//
extern "C" {
void *c_TalonSRX_Create(int deviceNumber, int controlPeriodMs)
{
return new CanTalonSRX(deviceNumber, controlPeriodMs);
}
void c_TalonSRX_Destroy(void *handle)
{
delete (CanTalonSRX*)handle;
}
CTR_Code c_TalonSRX_SetParam(void *handle, int paramEnum, double value)
{
return ((CanTalonSRX*)handle)->SetParam((CanTalonSRX::param_t)paramEnum, value);
}
CTR_Code c_TalonSRX_RequestParam(void *handle, int paramEnum)
{
return ((CanTalonSRX*)handle)->RequestParam((CanTalonSRX::param_t)paramEnum);
}
CTR_Code c_TalonSRX_GetParamResponse(void *handle, int paramEnum, double *value)
{
return ((CanTalonSRX*)handle)->GetParamResponse((CanTalonSRX::param_t)paramEnum, *value);
}
CTR_Code c_TalonSRX_GetParamResponseInt32(void *handle, int paramEnum, int *value)
{
return ((CanTalonSRX*)handle)->GetParamResponseInt32((CanTalonSRX::param_t)paramEnum, *value);
}
CTR_Code c_TalonSRX_SetStatusFrameRate(void *handle, unsigned frameEnum, unsigned periodMs)
{
return ((CanTalonSRX*)handle)->SetStatusFrameRate(frameEnum, periodMs);
}
CTR_Code c_TalonSRX_ClearStickyFaults(void *handle)
{
return ((CanTalonSRX*)handle)->ClearStickyFaults();
}
CTR_Code c_TalonSRX_GetFault_OverTemp(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFault_OverTemp(*param);
}
CTR_Code c_TalonSRX_GetFault_UnderVoltage(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFault_UnderVoltage(*param);
}
CTR_Code c_TalonSRX_GetFault_ForLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFault_ForLim(*param);
}
CTR_Code c_TalonSRX_GetFault_RevLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFault_RevLim(*param);
}
CTR_Code c_TalonSRX_GetFault_HardwareFailure(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFault_HardwareFailure(*param);
}
CTR_Code c_TalonSRX_GetFault_ForSoftLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFault_ForSoftLim(*param);
}
CTR_Code c_TalonSRX_GetFault_RevSoftLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFault_RevSoftLim(*param);
}
CTR_Code c_TalonSRX_GetStckyFault_OverTemp(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetStckyFault_OverTemp(*param);
}
CTR_Code c_TalonSRX_GetStckyFault_UnderVoltage(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetStckyFault_UnderVoltage(*param);
}
CTR_Code c_TalonSRX_GetStckyFault_ForLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetStckyFault_ForLim(*param);
}
CTR_Code c_TalonSRX_GetStckyFault_RevLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetStckyFault_RevLim(*param);
}
CTR_Code c_TalonSRX_GetStckyFault_ForSoftLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetStckyFault_ForSoftLim(*param);
}
CTR_Code c_TalonSRX_GetStckyFault_RevSoftLim(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetStckyFault_RevSoftLim(*param);
}
CTR_Code c_TalonSRX_GetAppliedThrottle(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetAppliedThrottle(*param);
}
CTR_Code c_TalonSRX_GetCloseLoopErr(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetCloseLoopErr(*param);
}
CTR_Code c_TalonSRX_GetFeedbackDeviceSelect(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFeedbackDeviceSelect(*param);
}
CTR_Code c_TalonSRX_GetModeSelect(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetModeSelect(*param);
}
CTR_Code c_TalonSRX_GetLimitSwitchEn(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetLimitSwitchEn(*param);
}
CTR_Code c_TalonSRX_GetLimitSwitchClosedFor(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetLimitSwitchClosedFor(*param);
}
CTR_Code c_TalonSRX_GetLimitSwitchClosedRev(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetLimitSwitchClosedRev(*param);
}
CTR_Code c_TalonSRX_GetSensorPosition(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetSensorPosition(*param);
}
CTR_Code c_TalonSRX_GetSensorVelocity(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetSensorVelocity(*param);
}
CTR_Code c_TalonSRX_GetCurrent(void *handle, double *param)
{
return ((CanTalonSRX*)handle)->GetCurrent(*param);
}
CTR_Code c_TalonSRX_GetBrakeIsEnabled(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetBrakeIsEnabled(*param);
}
CTR_Code c_TalonSRX_GetEncPosition(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetEncPosition(*param);
}
CTR_Code c_TalonSRX_GetEncVel(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetEncVel(*param);
}
CTR_Code c_TalonSRX_GetEncIndexRiseEvents(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetEncIndexRiseEvents(*param);
}
CTR_Code c_TalonSRX_GetQuadApin(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetQuadApin(*param);
}
CTR_Code c_TalonSRX_GetQuadBpin(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetQuadBpin(*param);
}
CTR_Code c_TalonSRX_GetQuadIdxpin(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetQuadIdxpin(*param);
}
CTR_Code c_TalonSRX_GetAnalogInWithOv(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetAnalogInWithOv(*param);
}
CTR_Code c_TalonSRX_GetAnalogInVel(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetAnalogInVel(*param);
}
CTR_Code c_TalonSRX_GetTemp(void *handle, double *param)
{
return ((CanTalonSRX*)handle)->GetTemp(*param);
}
CTR_Code c_TalonSRX_GetBatteryV(void *handle, double *param)
{
return ((CanTalonSRX*)handle)->GetBatteryV(*param);
}
CTR_Code c_TalonSRX_GetResetCount(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetResetCount(*param);
}
CTR_Code c_TalonSRX_GetResetFlags(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetResetFlags(*param);
}
CTR_Code c_TalonSRX_GetFirmVers(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetFirmVers(*param);
}
CTR_Code c_TalonSRX_SetDemand(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetDemand(param);
}
CTR_Code c_TalonSRX_SetOverrideLimitSwitchEn(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetOverrideLimitSwitchEn(param);
}
CTR_Code c_TalonSRX_SetFeedbackDeviceSelect(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetFeedbackDeviceSelect(param);
}
CTR_Code c_TalonSRX_SetRevMotDuringCloseLoopEn(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetRevMotDuringCloseLoopEn(param);
}
CTR_Code c_TalonSRX_SetOverrideBrakeType(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetOverrideBrakeType(param);
}
CTR_Code c_TalonSRX_SetModeSelect(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetModeSelect(param);
}
CTR_Code c_TalonSRX_SetModeSelect2(void *handle, int modeSelect, int demand)
{
return ((CanTalonSRX*)handle)->SetModeSelect(modeSelect, demand);
}
CTR_Code c_TalonSRX_SetProfileSlotSelect(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetProfileSlotSelect(param);
}
CTR_Code c_TalonSRX_SetRampThrottle(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetRampThrottle(param);
}
CTR_Code c_TalonSRX_SetRevFeedbackSensor(void *handle, int param)
{
return ((CanTalonSRX*)handle)->SetRevFeedbackSensor(param);
}
CTR_Code c_TalonSRX_GetPulseWidthPosition(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetPulseWidthPosition(*param);
}
CTR_Code c_TalonSRX_GetPulseWidthVelocity(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetPulseWidthVelocity(*param);
}
CTR_Code c_TalonSRX_GetPulseWidthRiseToFallUs(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetPulseWidthRiseToFallUs(*param);
}
CTR_Code c_TalonSRX_GetPulseWidthRiseToRiseUs(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->GetPulseWidthRiseToRiseUs(*param);
}
CTR_Code c_TalonSRX_IsPulseWidthSensorPresent(void *handle, int *param)
{
return ((CanTalonSRX*)handle)->IsPulseWidthSensorPresent(*param);
}
}