blob: 0895c9c0846ae467022ae6016cc5df24c171db92 [file] [log] [blame]
#include "HAL/Accelerometer.hpp"
#include "ChipObject.h"
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
// The 7-bit I2C address with a 0 "send" bit
static const uint8_t kSendAddress = (0x1c << 1) | 0;
// The 7-bit I2C address with a 1 "receive" bit
static const uint8_t kReceiveAddress = (0x1c << 1) | 1;
static const uint8_t kControlTxRx = 1;
static const uint8_t kControlStart = 2;
static const uint8_t kControlStop = 4;
static tAccel *accel = 0;
static AccelerometerRange accelerometerRange;
// Register addresses
enum Register {
kReg_Status = 0x00,
kReg_OutXMSB = 0x01,
kReg_OutXLSB = 0x02,
kReg_OutYMSB = 0x03,
kReg_OutYLSB = 0x04,
kReg_OutZMSB = 0x05,
kReg_OutZLSB = 0x06,
kReg_Sysmod = 0x0B,
kReg_IntSource = 0x0C,
kReg_WhoAmI = 0x0D,
kReg_XYZDataCfg = 0x0E,
kReg_HPFilterCutoff = 0x0F,
kReg_PLStatus = 0x10,
kReg_PLCfg = 0x11,
kReg_PLCount = 0x12,
kReg_PLBfZcomp = 0x13,
kReg_PLThsReg = 0x14,
kReg_FFMtCfg = 0x15,
kReg_FFMtSrc = 0x16,
kReg_FFMtThs = 0x17,
kReg_FFMtCount = 0x18,
kReg_TransientCfg = 0x1D,
kReg_TransientSrc = 0x1E,
kReg_TransientThs = 0x1F,
kReg_TransientCount = 0x20,
kReg_PulseCfg = 0x21,
kReg_PulseSrc = 0x22,
kReg_PulseThsx = 0x23,
kReg_PulseThsy = 0x24,
kReg_PulseThsz = 0x25,
kReg_PulseTmlt = 0x26,
kReg_PulseLtcy = 0x27,
kReg_PulseWind = 0x28,
kReg_ASlpCount = 0x29,
kReg_CtrlReg1 = 0x2A,
kReg_CtrlReg2 = 0x2B,
kReg_CtrlReg3 = 0x2C,
kReg_CtrlReg4 = 0x2D,
kReg_CtrlReg5 = 0x2E,
kReg_OffX = 0x2F,
kReg_OffY = 0x30,
kReg_OffZ = 0x31
};
extern "C" uint32_t getFPGATime(int32_t *status);
static void writeRegister(Register reg, uint8_t data);
static uint8_t readRegister(Register reg);
/**
* Initialize the accelerometer.
*/
static void initializeAccelerometer() {
int32_t status;
if(!accel) {
accel = tAccel::create(&status);
// Enable I2C
accel->writeCNFG(1, &status);
// Set the counter to 100 kbps
accel->writeCNTR(213, &status);
// The device identification number should be 0x2a
assert(readRegister(kReg_WhoAmI) == 0x2a);
}
}
static void writeRegister(Register reg, uint8_t data) {
int32_t status = 0;
uint32_t initialTime;
accel->writeADDR(kSendAddress, &status);
// Send a start transmit/receive message with the register address
accel->writeCNTL(kControlStart | kControlTxRx, &status);
accel->writeDATO(reg, &status);
accel->strobeGO(&status);
// Execute and wait until it's done (up to a millisecond)
initialTime = getFPGATime(&status);
while(accel->readSTAT(&status) & 1) {
if(getFPGATime(&status) > initialTime + 1000) break;
}
// Send a stop transmit/receive message with the data
accel->writeCNTL(kControlStop | kControlTxRx, &status);
accel->writeDATO(data, &status);
accel->strobeGO(&status);
// Execute and wait until it's done (up to a millisecond)
initialTime = getFPGATime(&status);
while(accel->readSTAT(&status) & 1) {
if(getFPGATime(&status) > initialTime + 1000) break;
}
fflush(stdout);
}
static uint8_t readRegister(Register reg) {
int32_t status = 0;
uint32_t initialTime;
// Send a start transmit/receive message with the register address
accel->writeADDR(kSendAddress, &status);
accel->writeCNTL(kControlStart | kControlTxRx, &status);
accel->writeDATO(reg, &status);
accel->strobeGO(&status);
// Execute and wait until it's done (up to a millisecond)
initialTime = getFPGATime(&status);
while(accel->readSTAT(&status) & 1) {
if(getFPGATime(&status) > initialTime + 1000) break;
}
// Receive a message with the data and stop
accel->writeADDR(kReceiveAddress, &status);
accel->writeCNTL(kControlStart | kControlStop | kControlTxRx, &status);
accel->strobeGO(&status);
// Execute and wait until it's done (up to a millisecond)
initialTime = getFPGATime(&status);
while(accel->readSTAT(&status) & 1) {
if(getFPGATime(&status) > initialTime + 1000) break;
}
fflush(stdout);
return accel->readDATI(&status);
}
/**
* Convert a 12-bit raw acceleration value into a scaled double in units of
* 1 g-force, taking into account the accelerometer range.
*/
static double unpackAxis(int16_t raw) {
// The raw value is actually 12 bits, not 16, so we need to propogate the
// 2's complement sign bit to the unused 4 bits for this to work with
// negative numbers.
raw <<= 4;
raw >>= 4;
switch(accelerometerRange) {
case kRange_2G: return raw / 1024.0;
case kRange_4G: return raw / 512.0;
case kRange_8G: return raw / 256.0;
default: return 0.0;
}
}
/**
* Set the accelerometer to active or standby mode. It must be in standby
* mode to change any configuration.
*/
void setAccelerometerActive(bool active) {
initializeAccelerometer();
uint8_t ctrlReg1 = readRegister(kReg_CtrlReg1);
ctrlReg1 &= ~1; // Clear the existing active bit
writeRegister(kReg_CtrlReg1, ctrlReg1 | (active? 1 : 0));
}
/**
* Set the range of values that can be measured (either 2, 4, or 8 g-forces).
* The accelerometer should be in standby mode when this is called.
*/
void setAccelerometerRange(AccelerometerRange range) {
initializeAccelerometer();
accelerometerRange = range;
uint8_t xyzDataCfg = readRegister(kReg_XYZDataCfg);
xyzDataCfg &= ~3; // Clear the existing two range bits
writeRegister(kReg_XYZDataCfg, xyzDataCfg | range);
}
/**
* Get the x-axis acceleration
*
* This is a floating point value in units of 1 g-force
*/
double getAccelerometerX() {
initializeAccelerometer();
int raw = (readRegister(kReg_OutXMSB) << 4) | (readRegister(kReg_OutXLSB) >> 4);
return unpackAxis(raw);
}
/**
* Get the y-axis acceleration
*
* This is a floating point value in units of 1 g-force
*/
double getAccelerometerY() {
initializeAccelerometer();
int raw = (readRegister(kReg_OutYMSB) << 4) | (readRegister(kReg_OutYLSB) >> 4);
return unpackAxis(raw);
}
/**
* Get the z-axis acceleration
*
* This is a floating point value in units of 1 g-force
*/
double getAccelerometerZ() {
initializeAccelerometer();
int raw = (readRegister(kReg_OutZMSB) << 4) | (readRegister(kReg_OutZLSB) >> 4);
return unpackAxis(raw);
}