blob: 77c52c46e464ba671951b2bef1d4ac4800dc679b [file] [log] [blame]
#include "frc971/control_loops/drivetrain/drivetrain.h"
#include <stdio.h>
#include <sched.h>
#include <cmath>
#include <memory>
#include "Eigen/Dense"
#include "aos/logging/logging.h"
#include "frc971/control_loops/drivetrain/down_estimator.h"
#include "frc971/control_loops/drivetrain/drivetrain_config.h"
#include "frc971/control_loops/drivetrain/drivetrain_goal_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_output_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_position_generated.h"
#include "frc971/control_loops/drivetrain/drivetrain_status_generated.h"
#include "frc971/control_loops/drivetrain/polydrivetrain.h"
#include "frc971/control_loops/drivetrain/ssdrivetrain.h"
#include "frc971/control_loops/runge_kutta.h"
#include "frc971/queues/gyro_generated.h"
#include "frc971/shifter_hall_effect.h"
#include "frc971/wpilib/imu_generated.h"
using ::aos::monotonic_clock;
namespace chrono = ::std::chrono;
namespace frc971 {
namespace control_loops {
namespace drivetrain {
DrivetrainLoop::DrivetrainLoop(const DrivetrainConfig<double> &dt_config,
::aos::EventLoop *event_loop,
LocalizerInterface *localizer,
const ::std::string &name)
: aos::controls::ControlLoop<Goal, Position, Status, Output>(event_loop,
name),
dt_config_(dt_config),
localizer_control_fetcher_(
event_loop->MakeFetcher<LocalizerControl>("/drivetrain")),
imu_values_fetcher_(
event_loop->MakeFetcher<::frc971::IMUValues>("/drivetrain")),
gyro_reading_fetcher_(
event_loop->MakeFetcher<::frc971::sensors::GyroReading>(
"/drivetrain")),
localizer_(localizer),
kf_(dt_config_.make_kf_drivetrain_loop()),
dt_openloop_(dt_config_, &kf_),
dt_closedloop_(dt_config_, &kf_, localizer_),
dt_spline_(dt_config_),
dt_line_follow_(dt_config_, localizer->target_selector()),
left_gear_(dt_config_.default_high_gear ? Gear::HIGH : Gear::LOW),
right_gear_(dt_config_.default_high_gear ? Gear::HIGH : Gear::LOW),
left_high_requested_(dt_config_.default_high_gear),
right_high_requested_(dt_config_.default_high_gear) {
::aos::controls::HPolytope<0>::Init();
event_loop->SetRuntimeRealtimePriority(30);
event_loop->OnRun([this]() {
// On the first fetch, make sure that we are caught all the way up to the
// present.
imu_values_fetcher_.Fetch();
});
if (dt_config.is_simulated) {
down_estimator_.assume_perfect_gravity();
}
}
int DrivetrainLoop::ControllerIndexFromGears() {
if (MaybeHigh(left_gear_)) {
if (MaybeHigh(right_gear_)) {
return 3;
} else {
return 2;
}
} else {
if (MaybeHigh(right_gear_)) {
return 1;
} else {
return 0;
}
}
}
Gear ComputeGear(double shifter_position,
const constants::ShifterHallEffect &shifter_config,
bool high_requested) {
if (shifter_position < shifter_config.clear_low) {
return Gear::LOW;
} else if (shifter_position > shifter_config.clear_high) {
return Gear::HIGH;
} else {
if (high_requested) {
return Gear::SHIFTING_UP;
} else {
return Gear::SHIFTING_DOWN;
}
}
}
void DrivetrainLoop::RunIteration(
const drivetrain::Goal *goal, const drivetrain::Position *position,
aos::Sender<drivetrain::Output>::Builder *output,
aos::Sender<drivetrain::Status>::Builder *status) {
const monotonic_clock::time_point monotonic_now =
event_loop()->monotonic_now();
if (!has_been_enabled_ && output) {
has_been_enabled_ = true;
}
// TODO(austin): Put gear detection logic here.
switch (dt_config_.shifter_type) {
case ShifterType::SIMPLE_SHIFTER:
// Force the right controller for simple shifters since we assume that
// gear switching is instantaneous.
if (left_high_requested_) {
left_gear_ = Gear::HIGH;
} else {
left_gear_ = Gear::LOW;
}
if (right_high_requested_) {
right_gear_ = Gear::HIGH;
} else {
right_gear_ = Gear::LOW;
}
break;
case ShifterType::HALL_EFFECT_SHIFTER:
left_gear_ = ComputeGear(position->left_shifter_position(),
dt_config_.left_drive, left_high_requested_);
right_gear_ = ComputeGear(position->right_shifter_position(),
dt_config_.right_drive, right_high_requested_);
break;
case ShifterType::NO_SHIFTER:
break;
}
kf_.set_index(ControllerIndexFromGears());
flatbuffers::Offset<GearLogging> gear_logging_offset;
// Set the gear-logging parts of the status
if (status) {
GearLogging::Builder gear_logging_builder =
status->MakeBuilder<GearLogging>();
gear_logging_builder.add_left_state(static_cast<uint32_t>(left_gear_));
gear_logging_builder.add_right_state(static_cast<uint32_t>(right_gear_));
gear_logging_builder.add_left_loop_high(MaybeHigh(left_gear_));
gear_logging_builder.add_right_loop_high(MaybeHigh(right_gear_));
gear_logging_builder.add_controller_index(kf_.index());
gear_logging_offset = gear_logging_builder.Finish();
}
while (imu_values_fetcher_.FetchNext()) {
imu_zeroer_.InsertMeasurement(*imu_values_fetcher_);
last_gyro_time_ = monotonic_now;
if (!imu_zeroer_.Zeroed()) {
continue;
}
aos::monotonic_clock::time_point reading_time(std::chrono::nanoseconds(
imu_values_fetcher_->monotonic_timestamp_ns()));
if (last_imu_update_ == aos::monotonic_clock::min_time) {
last_imu_update_ = reading_time;
}
down_estimator_.Predict(imu_zeroer_.ZeroedGyro(), imu_zeroer_.ZeroedAccel(),
reading_time - last_imu_update_);
last_imu_update_ = reading_time;
}
bool got_imu_reading = false;
if (imu_values_fetcher_.get() != nullptr) {
imu_zeroer_.ProcessMeasurements();
got_imu_reading = true;
switch (dt_config_.imu_type) {
case IMUType::IMU_X:
last_accel_ = -imu_values_fetcher_->accelerometer_x();
break;
case IMUType::IMU_FLIPPED_X:
last_accel_ = imu_values_fetcher_->accelerometer_x();
break;
case IMUType::IMU_Y:
last_accel_ = -imu_values_fetcher_->accelerometer_y();
break;
}
}
// TODO(austin): Signal the current gear to both loops.
switch (dt_config_.gyro_type) {
case GyroType::IMU_X_GYRO:
if (got_imu_reading) {
last_gyro_rate_ = imu_zeroer_.ZeroedGyro().x();
}
break;
case GyroType::IMU_Y_GYRO:
if (got_imu_reading) {
last_gyro_rate_ = imu_zeroer_.ZeroedGyro().y();
}
break;
case GyroType::IMU_Z_GYRO:
if (got_imu_reading) {
last_gyro_rate_ = imu_zeroer_.ZeroedGyro().z();
}
break;
case GyroType::FLIPPED_IMU_Z_GYRO:
if (got_imu_reading) {
last_gyro_rate_ = -imu_zeroer_.ZeroedGyro().z();
}
break;
case GyroType::SPARTAN_GYRO:
if (gyro_reading_fetcher_.Fetch()) {
last_gyro_rate_ = gyro_reading_fetcher_->velocity();
last_gyro_time_ = monotonic_now;
}
break;
case GyroType::FLIPPED_SPARTAN_GYRO:
if (gyro_reading_fetcher_.Fetch()) {
last_gyro_rate_ = -gyro_reading_fetcher_->velocity();
last_gyro_time_ = monotonic_now;
}
break;
default:
AOS_LOG(FATAL, "invalid gyro configured");
break;
}
if (monotonic_now > last_gyro_time_ + chrono::milliseconds(20)) {
last_gyro_rate_ = 0.0;
}
{
Eigen::Matrix<double, 4, 1> Y;
Y << position->left_encoder(), position->right_encoder(), last_gyro_rate_,
last_accel_;
kf_.Correct(Y);
// If we get a new message setting the absolute position, then reset the
// localizer.
// TODO(james): Use a watcher (instead of a fetcher) once we support it in
// simulation.
if (localizer_control_fetcher_.Fetch()) {
VLOG(1) << "localizer_control "
<< aos::FlatbufferToJson(localizer_control_fetcher_.get());
localizer_->ResetPosition(
monotonic_now, localizer_control_fetcher_->x(),
localizer_control_fetcher_->y(), localizer_control_fetcher_->theta(),
localizer_control_fetcher_->theta_uncertainty(),
!localizer_control_fetcher_->keep_current_theta());
}
localizer_->Update({last_last_left_voltage_, last_last_right_voltage_},
monotonic_now, position->left_encoder(),
position->right_encoder(),
down_estimator_.avg_recent_yaw_rates(),
down_estimator_.avg_recent_accel());
}
dt_openloop_.SetPosition(position, left_gear_, right_gear_);
ControllerType controller_type = ControllerType::POLYDRIVE;
if (goal) {
controller_type = goal->controller_type();
dt_closedloop_.SetGoal(goal);
dt_openloop_.SetGoal(goal->wheel(), goal->throttle(), goal->quickturn(),
goal->highgear());
dt_spline_.SetGoal(goal);
dt_line_follow_.SetGoal(monotonic_now, goal);
}
dt_openloop_.Update(robot_state().voltage_battery());
dt_closedloop_.Update(output != nullptr &&
controller_type == ControllerType::MOTION_PROFILE);
const Eigen::Matrix<double, 5, 1> trajectory_state =
(Eigen::Matrix<double, 5, 1>() << localizer_->x(), localizer_->y(),
localizer_->theta(), localizer_->left_velocity(),
localizer_->right_velocity())
.finished();
dt_spline_.Update(
output != nullptr && controller_type == ControllerType::SPLINE_FOLLOWER,
trajectory_state);
dt_line_follow_.Update(monotonic_now, trajectory_state);
OutputT output_struct;
switch (controller_type) {
case ControllerType::POLYDRIVE:
dt_openloop_.SetOutput(output != nullptr ? &output_struct : nullptr);
break;
case ControllerType::MOTION_PROFILE:
dt_closedloop_.SetOutput(output != nullptr ? &output_struct : nullptr);
break;
case ControllerType::SPLINE_FOLLOWER:
dt_spline_.SetOutput(output != nullptr ? &output_struct : nullptr);
break;
case ControllerType::LINE_FOLLOWER:
if (!dt_line_follow_.SetOutput(output != nullptr ? &output_struct
: nullptr)) {
// If the line follow drivetrain was unable to execute (generally due to
// not having a target), execute the regular teleop drivetrain.
dt_openloop_.SetOutput(output != nullptr ? &output_struct : nullptr);
}
break;
}
// The output should now contain the shift request.
// set the output status of the control loop state
if (status) {
Eigen::Matrix<double, 2, 1> linear =
dt_config_.LeftRightToLinear(kf_.X_hat());
Eigen::Matrix<double, 2, 1> angular =
dt_config_.LeftRightToAngular(kf_.X_hat());
angular(0, 0) = localizer_->theta();
Eigen::Matrix<double, 4, 1> gyro_left_right =
dt_config_.AngularLinearToLeftRight(linear, angular);
const flatbuffers::Offset<CIMLogging> cim_logging_offset =
dt_openloop_.PopulateShiftingStatus(status->fbb());
const flatbuffers::Offset<PolyDriveLogging> poly_drive_logging_offset =
dt_openloop_.PopulateStatus(status->fbb());
const flatbuffers::Offset<DownEstimatorState> down_estimator_state_offset =
down_estimator_.PopulateStatus(status->fbb(), monotonic_now);
const flatbuffers::Offset<LocalizerState> localizer_offset =
localizer_->PopulateStatus(status->fbb());
const flatbuffers::Offset<ImuZeroerState> zeroer_offset =
imu_zeroer_.PopulateStatus(status->fbb());
flatbuffers::Offset<LineFollowLogging> line_follow_logging_offset =
dt_line_follow_.PopulateStatus(status);
flatbuffers::Offset<TrajectoryLogging> trajectory_logging_offset =
dt_spline_.MakeTrajectoryLogging(status);
StatusBuilder builder = status->MakeBuilder<Status>();
dt_closedloop_.PopulateStatus(&builder);
builder.add_estimated_left_position(gyro_left_right(0, 0));
builder.add_estimated_right_position(gyro_left_right(2, 0));
builder.add_estimated_left_velocity(gyro_left_right(1, 0));
builder.add_estimated_right_velocity(gyro_left_right(3, 0));
if (dt_spline_.enable()) {
dt_spline_.PopulateStatus(&builder);
} else {
builder.add_robot_speed((kf_.X_hat(1) + kf_.X_hat(3)) / 2.0);
builder.add_output_was_capped(dt_closedloop_.output_was_capped());
builder.add_uncapped_left_voltage(kf_.U_uncapped(0, 0));
builder.add_uncapped_right_voltage(kf_.U_uncapped(1, 0));
}
builder.add_left_voltage_error(kf_.X_hat(4));
builder.add_right_voltage_error(kf_.X_hat(5));
builder.add_estimated_angular_velocity_error(kf_.X_hat(6));
builder.add_estimated_heading(localizer_->theta());
builder.add_x(localizer_->x());
builder.add_y(localizer_->y());
builder.add_theta(::aos::math::NormalizeAngle(localizer_->theta()));
builder.add_cim_logging(cim_logging_offset);
builder.add_poly_drive_logging(poly_drive_logging_offset);
builder.add_gear_logging(gear_logging_offset);
builder.add_line_follow_logging(line_follow_logging_offset);
builder.add_trajectory_logging(trajectory_logging_offset);
builder.add_down_estimator(down_estimator_state_offset);
builder.add_localizer(localizer_offset);
builder.add_zeroing(zeroer_offset);
status->Send(builder.Finish());
}
double left_voltage = 0.0;
double right_voltage = 0.0;
if (output) {
left_voltage = output_struct.left_voltage;
right_voltage = output_struct.right_voltage;
left_high_requested_ = output_struct.left_high;
right_high_requested_ = output_struct.right_high;
}
const double scalar = robot_state().voltage_battery() / 12.0;
left_voltage *= scalar;
right_voltage *= scalar;
// To validate, look at the following:
// Observed - dx/dt velocity for left, right.
// Angular velocity error compared to the gyro
// Gyro heading vs left-right
// Voltage error.
last_last_left_voltage_ = last_left_voltage_;
last_last_right_voltage_ = last_right_voltage_;
Eigen::Matrix<double, 2, 1> U;
U(0, 0) = last_left_voltage_;
U(1, 0) = last_right_voltage_;
last_left_voltage_ = left_voltage;
last_right_voltage_ = right_voltage;
last_state_ = kf_.X_hat();
kf_.UpdateObserver(U, dt_config_.dt);
if (output) {
output->Send(Output::Pack(*output->fbb(), &output_struct));
}
}
flatbuffers::Offset<Output> DrivetrainLoop::Zero(
aos::Sender<Output>::Builder *output) {
Output::Builder builder = output->MakeBuilder<Output>();
builder.add_left_voltage(0);
builder.add_right_voltage(0);
builder.add_left_high(dt_config_.default_high_gear);
builder.add_right_high(dt_config_.default_high_gear);
return builder.Finish();
}
} // namespace drivetrain
} // namespace control_loops
} // namespace frc971