blob: 16c95c8debe966a8d96c36636efe8eac26883f95 [file] [log] [blame]
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <array>
#include <chrono>
#include <cmath>
#include <functional>
#include <thread>
#include "frc971/wpilib/ahal/AnalogInput.h"
#include "frc971/wpilib/ahal/Counter.h"
#include "frc971/wpilib/ahal/DigitalGlitchFilter.h"
#include "frc971/wpilib/ahal/DriverStation.h"
#include "frc971/wpilib/ahal/Encoder.h"
#include "frc971/wpilib/ahal/Relay.h"
#include "frc971/wpilib/ahal/Servo.h"
#include "frc971/wpilib/ahal/VictorSP.h"
#include "ctre/phoenix/CANifier.h"
#undef ERROR
#include "aos/commonmath.h"
#include "aos/events/shm-event-loop.h"
#include "aos/init.h"
#include "aos/logging/logging.h"
#include "aos/logging/queue_logging.h"
#include "aos/make_unique.h"
#include "aos/robot_state/robot_state.q.h"
#include "aos/time/time.h"
#include "aos/util/compiler_memory_barrier.h"
#include "aos/util/log_interval.h"
#include "aos/util/phased_loop.h"
#include "aos/util/wrapping_counter.h"
#include "frc971/control_loops/control_loops.q.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/wpilib/ADIS16448.h"
#include "frc971/wpilib/buffered_pcm.h"
#include "frc971/wpilib/buffered_solenoid.h"
#include "frc971/wpilib/dma.h"
#include "frc971/wpilib/dma_edge_counting.h"
#include "frc971/wpilib/drivetrain_writer.h"
#include "frc971/wpilib/encoder_and_potentiometer.h"
#include "frc971/wpilib/joystick_sender.h"
#include "frc971/wpilib/logging.q.h"
#include "frc971/wpilib/loop_output_handler.h"
#include "frc971/wpilib/pdp_fetcher.h"
#include "frc971/wpilib/sensor_reader.h"
#include "frc971/wpilib/wpilib_robot_base.h"
#include "y2018/constants.h"
#include "y2018/control_loops/superstructure/superstructure.q.h"
#include "y2018/status_light.q.h"
#include "y2018/vision/vision.q.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using ::frc971::control_loops::drivetrain_queue;
using ::y2018::control_loops::SuperstructureQueue;
using ::y2018::constants::Values;
using ::aos::monotonic_clock;
namespace chrono = ::std::chrono;
using aos::make_unique;
namespace y2018 {
namespace wpilib {
namespace {
constexpr double kMaxBringupPower = 12.0;
// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
// DMA stuff and then removing the * 2.0 in *_translate.
// The low bit is direction.
// TODO(brian): Use ::std::max instead once we have C++14 so that can be
// constexpr.
template <typename T>
constexpr T max(T a, T b) {
return (a > b) ? a : b;
}
template <typename T, typename... Rest>
constexpr T max(T a, T b, T c, Rest... rest) {
return max(max(a, b), c, rest...);
}
double drivetrain_translate(int32_t in) {
return ((static_cast<double>(in) /
Values::kDrivetrainEncoderCountsPerRevolution()) *
(2.0 * M_PI)) *
Values::kDrivetrainEncoderRatio() *
control_loops::drivetrain::kWheelRadius;
}
double drivetrain_velocity_translate(double in) {
return (((1.0 / in) / Values::kDrivetrainCyclesPerRevolution()) *
(2.0 * M_PI)) *
Values::kDrivetrainEncoderRatio() *
control_loops::drivetrain::kWheelRadius;
}
double proximal_pot_translate(double voltage) {
return -voltage * Values::kProximalPotRatio() *
(3.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
double distal_pot_translate(double voltage) {
return voltage * Values::kDistalPotRatio() *
(10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
double intake_pot_translate(double voltage) {
return voltage * Values::kIntakeMotorPotRatio() *
(10.0 /*turns*/ / 5.0 /*volts*/) * (2 * M_PI /*radians*/);
}
double intake_spring_translate(double voltage) {
return voltage * Values::kIntakeSpringRatio() * (2 * M_PI /*radians*/) /
(5.0 /*volts*/);
}
// TODO() figure out differnce between max and min voltages on shifter pots.
// Returns value from 0.0 to 1.0, with 0.0 being close to low gear so it can be
// passed drectly into the drivetrain position queue.
double drivetrain_shifter_pot_translate(double voltage) {
return (voltage - Values::kDrivetrainShifterPotMinVoltage()) /
(Values::kDrivetrainShifterPotMaxVoltage() -
Values::kDrivetrainShifterPotMinVoltage());
}
constexpr double kMaxFastEncoderPulsesPerSecond =
max(Values::kMaxDrivetrainEncoderPulsesPerSecond(),
Values::kMaxIntakeMotorEncoderPulsesPerSecond());
static_assert(kMaxFastEncoderPulsesPerSecond <= 1300000,
"fast encoders are too fast");
constexpr double kMaxMediumEncoderPulsesPerSecond =
max(Values::kMaxProximalEncoderPulsesPerSecond(),
Values::kMaxDistalEncoderPulsesPerSecond());
static_assert(kMaxMediumEncoderPulsesPerSecond <= 400000,
"medium encoders are too fast");
// Class to send position messages with sensor readings to our loops.
class SensorReader : public ::frc971::wpilib::SensorReader {
public:
SensorReader(::aos::EventLoop *event_loop)
: ::frc971::wpilib::SensorReader(event_loop),
superstructure_position_sender_(
event_loop->MakeSender<SuperstructureQueue::Position>(
".y2018.control_loops.superstructure_queue.position")) {
// Set to filter out anything shorter than 1/4 of the minimum pulse width
// we should ever see.
UpdateFastEncoderFilterHz(kMaxFastEncoderPulsesPerSecond);
UpdateMediumEncoderFilterHz(kMaxMediumEncoderPulsesPerSecond);
}
void set_left_drivetrain_shifter_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
left_drivetrain_shifter_ = ::std::move(potentiometer);
}
void set_right_drivetrain_shifter_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
right_drivetrain_shifter_ = ::std::move(potentiometer);
}
// Proximal joint.
void set_proximal_encoder(::std::unique_ptr<frc::Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
proximal_encoder_.set_encoder(::std::move(encoder));
}
void set_proximal_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
proximal_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_proximal_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
proximal_encoder_.set_potentiometer(::std::move(potentiometer));
}
// Distal joint.
void set_distal_encoder(::std::unique_ptr<frc::Encoder> encoder) {
medium_encoder_filter_.Add(encoder.get());
distal_encoder_.set_encoder(::std::move(encoder));
}
void set_distal_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
fast_encoder_filter_.Add(absolute_pwm.get());
distal_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_distal_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
distal_encoder_.set_potentiometer(::std::move(potentiometer));
}
// Left intake side.
void set_left_intake_encoder(::std::unique_ptr<frc::Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
left_intake_encoder_.set_encoder(::std::move(encoder));
}
void set_left_intake_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
fast_encoder_filter_.Add(absolute_pwm.get());
left_intake_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_left_intake_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
left_intake_encoder_.set_potentiometer(::std::move(potentiometer));
}
void set_left_intake_spring_angle(
::std::unique_ptr<frc::AnalogInput> encoder) {
left_intake_spring_angle_ = ::std::move(encoder);
}
void set_left_intake_cube_detector(
::std::unique_ptr<frc::DigitalInput> input) {
left_intake_cube_detector_ = ::std::move(input);
}
// Right intake side.
void set_right_intake_encoder(::std::unique_ptr<frc::Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
right_intake_encoder_.set_encoder(::std::move(encoder));
}
void set_right_intake_absolute_pwm(
::std::unique_ptr<frc::DigitalInput> absolute_pwm) {
fast_encoder_filter_.Add(absolute_pwm.get());
right_intake_encoder_.set_absolute_pwm(::std::move(absolute_pwm));
}
void set_right_intake_potentiometer(
::std::unique_ptr<frc::AnalogInput> potentiometer) {
right_intake_encoder_.set_potentiometer(::std::move(potentiometer));
}
void set_right_intake_spring_angle(
::std::unique_ptr<frc::AnalogInput> encoder) {
right_intake_spring_angle_ = ::std::move(encoder);
}
void set_right_intake_cube_detector(
::std::unique_ptr<frc::DigitalInput> input) {
right_intake_cube_detector_ = ::std::move(input);
}
void set_claw_beambreak(::std::unique_ptr<frc::DigitalInput> input) {
claw_beambreak_ = ::std::move(input);
}
void set_box_back_beambreak(::std::unique_ptr<frc::DigitalInput> input) {
box_back_beambreak_ = ::std::move(input);
}
void set_lidar_lite_input(::std::unique_ptr<frc::DigitalInput> lidar_lite_input) {
lidar_lite_input_ = ::std::move(lidar_lite_input);
lidar_lite_.set_input(lidar_lite_input_.get());
}
void Start() { AddToDMA(&lidar_lite_); }
void RunIteration() {
{
auto drivetrain_message = drivetrain_queue.position.MakeMessage();
drivetrain_message->left_encoder =
drivetrain_translate(drivetrain_left_encoder_->GetRaw());
drivetrain_message->left_speed =
drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
drivetrain_message->left_shifter_position =
drivetrain_shifter_pot_translate(
left_drivetrain_shifter_->GetVoltage());
drivetrain_message->right_encoder =
-drivetrain_translate(drivetrain_right_encoder_->GetRaw());
drivetrain_message->right_speed =
-drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
drivetrain_message->right_shifter_position =
drivetrain_shifter_pot_translate(
right_drivetrain_shifter_->GetVoltage());
drivetrain_message.Send();
}
}
void RunDmaIteration() {
const auto values = constants::GetValues();
{
auto superstructure_message =
superstructure_position_sender_.MakeMessage();
CopyPosition(proximal_encoder_, &superstructure_message->arm.proximal,
Values::kProximalEncoderCountsPerRevolution(),
Values::kProximalEncoderRatio(), proximal_pot_translate,
true, values.arm_proximal.potentiometer_offset);
CopyPosition(distal_encoder_, &superstructure_message->arm.distal,
Values::kDistalEncoderCountsPerRevolution(),
Values::kDistalEncoderRatio(), distal_pot_translate, true,
values.arm_distal.potentiometer_offset);
CopyPosition(left_intake_encoder_,
&superstructure_message->left_intake.motor_position,
Values::kIntakeMotorEncoderCountsPerRevolution(),
Values::kIntakeMotorEncoderRatio(), intake_pot_translate,
false, values.left_intake.potentiometer_offset);
CopyPosition(right_intake_encoder_,
&superstructure_message->right_intake.motor_position,
Values::kIntakeMotorEncoderCountsPerRevolution(),
Values::kIntakeMotorEncoderRatio(), intake_pot_translate,
true, values.right_intake.potentiometer_offset);
superstructure_message->left_intake.spring_angle =
intake_spring_translate(left_intake_spring_angle_->GetVoltage()) +
values.left_intake.spring_offset;
superstructure_message->left_intake.beam_break =
!left_intake_cube_detector_->Get();
superstructure_message->right_intake.spring_angle =
-intake_spring_translate(right_intake_spring_angle_->GetVoltage()) +
values.right_intake.spring_offset;
superstructure_message->right_intake.beam_break =
!right_intake_cube_detector_->Get();
superstructure_message->claw_beambreak_triggered = !claw_beambreak_->Get();
superstructure_message->box_back_beambreak_triggered =
!box_back_beambreak_->Get();
superstructure_message->box_distance =
lidar_lite_.last_width() / 0.00001 / 100.0 / 2;
superstructure_message.Send();
}
}
private:
::aos::Sender<SuperstructureQueue::Position> superstructure_position_sender_;
::std::unique_ptr<frc::AnalogInput> left_drivetrain_shifter_,
right_drivetrain_shifter_;
::frc971::wpilib::AbsoluteEncoderAndPotentiometer proximal_encoder_,
distal_encoder_;
::frc971::wpilib::AbsoluteEncoderAndPotentiometer left_intake_encoder_,
right_intake_encoder_;
::std::unique_ptr<frc::AnalogInput> left_intake_spring_angle_,
right_intake_spring_angle_;
::std::unique_ptr<frc::DigitalInput> left_intake_cube_detector_,
right_intake_cube_detector_;
::std::unique_ptr<frc::DigitalInput> claw_beambreak_;
::std::unique_ptr<frc::DigitalInput> box_back_beambreak_;
::std::unique_ptr<frc::DigitalInput> lidar_lite_input_;
::frc971::wpilib::DMAPulseWidthReader lidar_lite_;
};
class SolenoidWriter {
public:
SolenoidWriter(::aos::EventLoop *event_loop,
::frc971::wpilib::BufferedPcm *pcm)
: event_loop_(event_loop),
drivetrain_fetcher_(
event_loop
->MakeFetcher<::frc971::control_loops::DrivetrainQueue::Output>(
".frc971.control_loops.drivetrain_queue.output")),
superstructure_fetcher_(
event_loop->MakeFetcher<SuperstructureQueue::Output>(
".y2018.control_loops.superstructure_queue.output")),
status_light_fetcher_(event_loop->MakeFetcher<::y2018::StatusLight>(
".y2018.status_light")),
vision_status_fetcher_(
event_loop->MakeFetcher<::y2018::vision::VisionStatus>(
".y2018.vision.vision_status")),
pcm_(pcm) {
event_loop_->set_name("Solenoids");
event_loop_->SetRuntimeRealtimePriority(27);
int32_t status = 0;
HAL_CompressorHandle compressor_ = HAL_InitializeCompressor(0, &status);
if (status != 0) {
LOG(ERROR, "Compressor status is nonzero, %d\n",
static_cast<int>(status));
}
HAL_SetCompressorClosedLoopControl(compressor_, true, &status);
if (status != 0) {
LOG(ERROR, "Compressor status is nonzero, %d\n",
static_cast<int>(status));
}
event_loop_->AddPhasedLoop([this](int iterations) { Loop(iterations); },
::std::chrono::milliseconds(20),
::std::chrono::milliseconds(1));
}
// left drive
// right drive
//
// claw
// arm brakes
// hook release
// fork release
void set_left_drivetrain_shifter(
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
left_drivetrain_shifter_ = ::std::move(s);
}
void set_right_drivetrain_shifter(
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
right_drivetrain_shifter_ = ::std::move(s);
}
void set_claw(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
claw_ = ::std::move(s);
}
void set_arm_brakes(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
arm_brakes_ = ::std::move(s);
}
void set_hook(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
hook_ = ::std::move(s);
}
void set_forks(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
forks_ = ::std::move(s);
}
void Loop(const int iterations) {
if (iterations != 1) {
LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
}
{
drivetrain_fetcher_.Fetch();
if (drivetrain_fetcher_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *drivetrain_fetcher_);
left_drivetrain_shifter_->Set(!drivetrain_fetcher_->left_high);
right_drivetrain_shifter_->Set(!drivetrain_fetcher_->right_high);
}
}
{
superstructure_fetcher_.Fetch();
if (superstructure_fetcher_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *superstructure_fetcher_);
claw_->Set(!superstructure_fetcher_->claw_grabbed);
arm_brakes_->Set(superstructure_fetcher_->release_arm_brake);
hook_->Set(superstructure_fetcher_->hook_release);
forks_->Set(superstructure_fetcher_->forks_release);
}
}
{
::frc971::wpilib::PneumaticsToLog to_log;
pcm_->Flush();
to_log.read_solenoids = pcm_->GetAll();
LOG_STRUCT(DEBUG, "pneumatics info", to_log);
}
monotonic_clock::time_point monotonic_now = event_loop_->monotonic_now();
status_light_fetcher_.Fetch();
// If we don't have a light request (or it's an old one), we are borked.
// Flash the red light slowly.
if (!status_light_fetcher_.get() ||
monotonic_now >
status_light_fetcher_->sent_time + chrono::milliseconds(100)) {
StatusLight color;
color.red = 0.0;
color.green = 0.0;
color.blue = 0.0;
vision_status_fetcher_.Fetch();
++light_flash_;
if (light_flash_ > 10) {
color.red = 0.5;
} else if (!vision_status_fetcher_.get() ||
monotonic_now >
vision_status_fetcher_->sent_time + chrono::seconds(1)) {
color.red = 0.5;
color.green = 0.5;
}
if (light_flash_ > 20) {
light_flash_ = 0;
}
LOG_STRUCT(DEBUG, "color", color);
SetColor(color);
} else {
LOG_STRUCT(DEBUG, "color", *status_light_fetcher_);
SetColor(*status_light_fetcher_);
}
}
void SetColor(const StatusLight &status_light) {
// Save CAN bandwidth and CPU at the cost of RT. Only change the light when
// it actually changes. This is pretty low priority anyways.
static int time_since_last_send = 0;
++time_since_last_send;
if (time_since_last_send > 10) {
time_since_last_send = 0;
}
if (status_light.green != last_green_ || time_since_last_send == 0) {
canifier_.SetLEDOutput(1.0 - status_light.green,
::ctre::phoenix::CANifier::LEDChannelB);
last_green_ = status_light.green;
}
if (status_light.blue != last_blue_ || time_since_last_send == 0) {
canifier_.SetLEDOutput(1.0 - status_light.blue,
::ctre::phoenix::CANifier::LEDChannelA);
last_blue_ = status_light.blue;
}
if (status_light.red != last_red_ || time_since_last_send == 0) {
canifier_.SetLEDOutput(1.0 - status_light.red,
::ctre::phoenix::CANifier::LEDChannelC);
last_red_ = status_light.red;
}
}
void Quit() { run_ = false; }
private:
::aos::EventLoop *event_loop_;
::aos::Fetcher<::frc971::control_loops::DrivetrainQueue::Output>
drivetrain_fetcher_;
::aos::Fetcher<SuperstructureQueue::Output> superstructure_fetcher_;
::aos::Fetcher<::y2018::StatusLight> status_light_fetcher_;
::aos::Fetcher<::y2018::vision::VisionStatus> vision_status_fetcher_;
::frc971::wpilib::BufferedPcm *pcm_;
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid>
left_drivetrain_shifter_, right_drivetrain_shifter_, claw_, arm_brakes_,
hook_, forks_;
HAL_CompressorHandle compressor_;
::ctre::phoenix::CANifier canifier_{0};
::std::atomic<bool> run_{true};
double last_red_ = -1.0;
double last_green_ = -1.0;
double last_blue_ = -1.0;
int light_flash_ = 0;
};
class SuperstructureWriter
: public ::frc971::wpilib::LoopOutputHandler<SuperstructureQueue::Output> {
public:
SuperstructureWriter(::aos::EventLoop *event_loop)
: ::frc971::wpilib::LoopOutputHandler<SuperstructureQueue::Output>(
event_loop, ".y2018.control_loops.superstructure_queue.output") {}
void set_proximal_victor(::std::unique_ptr<::frc::VictorSP> t) {
proximal_victor_ = ::std::move(t);
}
void set_distal_victor(::std::unique_ptr<::frc::VictorSP> t) {
distal_victor_ = ::std::move(t);
}
void set_hanger_victor(::std::unique_ptr<::frc::VictorSP> t) {
hanger_victor_ = ::std::move(t);
}
void set_left_intake_elastic_victor(::std::unique_ptr<::frc::VictorSP> t) {
left_intake_elastic_victor_ = ::std::move(t);
}
void set_right_intake_elastic_victor(::std::unique_ptr<::frc::VictorSP> t) {
right_intake_elastic_victor_ = ::std::move(t);
}
void set_left_intake_rollers_victor(::std::unique_ptr<::frc::VictorSP> t) {
left_intake_rollers_victor_ = ::std::move(t);
}
void set_right_intake_rollers_victor(::std::unique_ptr<::frc::VictorSP> t) {
right_intake_rollers_victor_ = ::std::move(t);
}
private:
virtual void Write(const SuperstructureQueue::Output &output) override {
LOG_STRUCT(DEBUG, "will output", output);
left_intake_elastic_victor_->SetSpeed(
::aos::Clip(-output.left_intake.voltage_elastic, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
right_intake_elastic_victor_->SetSpeed(
::aos::Clip(output.right_intake.voltage_elastic, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
left_intake_rollers_victor_->SetSpeed(
::aos::Clip(-output.left_intake.voltage_rollers, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
right_intake_rollers_victor_->SetSpeed(
::aos::Clip(output.right_intake.voltage_rollers, -kMaxBringupPower,
kMaxBringupPower) /
12.0);
proximal_victor_->SetSpeed(::aos::Clip(-output.voltage_proximal,
-kMaxBringupPower,
kMaxBringupPower) /
12.0);
distal_victor_->SetSpeed(::aos::Clip(output.voltage_distal,
-kMaxBringupPower, kMaxBringupPower) /
12.0);
hanger_victor_->SetSpeed(
::aos::Clip(-output.voltage_winch, -kMaxBringupPower, kMaxBringupPower) /
12.0);
}
virtual void Stop() override {
LOG(WARNING, "Superstructure output too old.\n");
left_intake_rollers_victor_->SetDisabled();
right_intake_rollers_victor_->SetDisabled();
left_intake_elastic_victor_->SetDisabled();
right_intake_elastic_victor_->SetDisabled();
proximal_victor_->SetDisabled();
distal_victor_->SetDisabled();
hanger_victor_->SetDisabled();
}
::std::unique_ptr<::frc::VictorSP> left_intake_rollers_victor_,
right_intake_rollers_victor_, left_intake_elastic_victor_,
right_intake_elastic_victor_, proximal_victor_, distal_victor_,
hanger_victor_;
};
class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
public:
::std::unique_ptr<frc::Encoder> make_encoder(int index) {
return make_unique<frc::Encoder>(10 + index * 2, 11 + index * 2, false,
frc::Encoder::k4X);
}
void Run() override {
// Thread 1.
::aos::ShmEventLoop joystick_sender_event_loop;
::frc971::wpilib::JoystickSender joystick_sender(
&joystick_sender_event_loop);
AddLoop(&joystick_sender_event_loop);
// Thread 2.
::aos::ShmEventLoop pdp_fetcher_event_loop;
::frc971::wpilib::PDPFetcher pdp_fetcher(&pdp_fetcher_event_loop);
AddLoop(&pdp_fetcher_event_loop);
// Thread 3.
::aos::ShmEventLoop sensor_reader_event_loop;
SensorReader sensor_reader(&sensor_reader_event_loop);
sensor_reader.set_drivetrain_left_encoder(make_encoder(0));
sensor_reader.set_left_drivetrain_shifter_potentiometer(
make_unique<frc::AnalogInput>(6));
sensor_reader.set_drivetrain_right_encoder(make_encoder(1));
sensor_reader.set_right_drivetrain_shifter_potentiometer(
make_unique<frc::AnalogInput>(7));
sensor_reader.set_proximal_encoder(make_encoder(4));
sensor_reader.set_proximal_absolute_pwm(make_unique<frc::DigitalInput>(2));
sensor_reader.set_proximal_potentiometer(make_unique<frc::AnalogInput>(2));
sensor_reader.set_distal_encoder(make_encoder(2));
sensor_reader.set_distal_absolute_pwm(make_unique<frc::DigitalInput>(3));
sensor_reader.set_distal_potentiometer(make_unique<frc::AnalogInput>(3));
sensor_reader.set_right_intake_encoder(make_encoder(5));
sensor_reader.set_right_intake_absolute_pwm(
make_unique<frc::DigitalInput>(7));
sensor_reader.set_right_intake_potentiometer(
make_unique<frc::AnalogInput>(1));
sensor_reader.set_right_intake_spring_angle(
make_unique<frc::AnalogInput>(5));
sensor_reader.set_right_intake_cube_detector(
make_unique<frc::DigitalInput>(1));
sensor_reader.set_left_intake_encoder(make_encoder(3));
sensor_reader.set_left_intake_absolute_pwm(
make_unique<frc::DigitalInput>(4));
sensor_reader.set_left_intake_potentiometer(
make_unique<frc::AnalogInput>(0));
sensor_reader.set_left_intake_spring_angle(
make_unique<frc::AnalogInput>(4));
sensor_reader.set_left_intake_cube_detector(
make_unique<frc::DigitalInput>(0));
sensor_reader.set_claw_beambreak(make_unique<frc::DigitalInput>(8));
sensor_reader.set_box_back_beambreak(make_unique<frc::DigitalInput>(9));
sensor_reader.set_pwm_trigger(true);
sensor_reader.set_lidar_lite_input(make_unique<frc::DigitalInput>(22));
AddLoop(&sensor_reader_event_loop);
// Thread 4.
::aos::ShmEventLoop imu_event_loop;
auto imu_trigger = make_unique<frc::DigitalInput>(5);
::frc971::wpilib::ADIS16448 imu(&imu_event_loop, frc::SPI::Port::kOnboardCS1,
imu_trigger.get());
imu.SetDummySPI(frc::SPI::Port::kOnboardCS2);
auto imu_reset = make_unique<frc::DigitalOutput>(6);
imu.set_reset(imu_reset.get());
AddLoop(&imu_event_loop);
// While as of 2/9/18 the drivetrain Victors are SPX, it appears as though
// they are identical, as far as DrivetrainWriter is concerned, to the SP
// variety so all the Victors are written as SPs.
// Thread 5.
::aos::ShmEventLoop output_event_loop;
::frc971::wpilib::DrivetrainWriter drivetrain_writer(&output_event_loop);
drivetrain_writer.set_left_controller0(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(2)), false);
drivetrain_writer.set_right_controller0(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(3)), true);
SuperstructureWriter superstructure_writer(&output_event_loop);
superstructure_writer.set_left_intake_elastic_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(4)));
superstructure_writer.set_left_intake_rollers_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(5)));
superstructure_writer.set_right_intake_elastic_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(7)));
superstructure_writer.set_right_intake_rollers_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(6)));
superstructure_writer.set_proximal_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(0)));
superstructure_writer.set_distal_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(1)));
superstructure_writer.set_hanger_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(8)));
AddLoop(&output_event_loop);
// Thread 6.
// This is a separate event loop because we want to run it at much lower
// priority.
::aos::ShmEventLoop solenoid_writer_event_loop;
::frc971::wpilib::BufferedPcm pcm;
SolenoidWriter solenoid_writer(&solenoid_writer_event_loop, &pcm);
solenoid_writer.set_left_drivetrain_shifter(pcm.MakeSolenoid(0));
solenoid_writer.set_right_drivetrain_shifter(pcm.MakeSolenoid(1));
solenoid_writer.set_claw(pcm.MakeSolenoid(2));
solenoid_writer.set_arm_brakes(pcm.MakeSolenoid(3));
solenoid_writer.set_hook(pcm.MakeSolenoid(4));
solenoid_writer.set_forks(pcm.MakeSolenoid(5));
AddLoop(&solenoid_writer_event_loop);
RunLoops();
}
};
} // namespace
} // namespace wpilib
} // namespace y2018
AOS_ROBOT_CLASS(::y2018::wpilib::WPILibRobot);