| #include "y2016_bot3/control_loops/intake/intake.h" |
| #include "y2016_bot3/control_loops/intake/intake_controls.h" |
| |
| #include "aos/common/commonmath.h" |
| #include "aos/common/controls/control_loops.q.h" |
| #include "aos/common/logging/logging.h" |
| |
| #include "y2016_bot3/control_loops/intake/integral_intake_plant.h" |
| #include "y2016_bot3/queues/ball_detector.q.h" |
| |
| namespace y2016_bot3 { |
| namespace constants { |
| constexpr double IntakeZero::pot_offset; |
| constexpr ::frc971::constants::ZeroingConstants IntakeZero::zeroing; |
| } // namespace constants |
| |
| namespace control_loops { |
| namespace intake { |
| |
| namespace { |
| // The maximum voltage the intake roller will be allowed to use. |
| constexpr float kMaxIntakeTopVoltage = 12.0; |
| constexpr float kMaxIntakeBottomVoltage = 12.0; |
| constexpr float kMaxIntakeRollersVoltage = 12.0; |
| } |
| // namespace |
| |
| void LimitChecker::UpdateGoal(double intake_angle_goal) { |
| intake_->set_unprofiled_goal(intake_angle_goal); |
| } |
| |
| Intake::Intake(control_loops::IntakeQueue *intake_queue) |
| : aos::controls::ControlLoop<control_loops::IntakeQueue>(intake_queue), |
| limit_checker_(&intake_) {} |
| bool Intake::IsIntakeNear(double tolerance) { |
| return ((intake_.unprofiled_goal() - intake_.X_hat()) |
| .block<2, 1>(0, 0) |
| .lpNorm<Eigen::Infinity>() < tolerance); |
| } |
| |
| void Intake::RunIteration(const control_loops::IntakeQueue::Goal *unsafe_goal, |
| const control_loops::IntakeQueue::Position *position, |
| control_loops::IntakeQueue::Output *output, |
| control_loops::IntakeQueue::Status *status) { |
| const State state_before_switch = state_; |
| if (WasReset()) { |
| LOG(ERROR, "WPILib reset, restarting\n"); |
| intake_.Reset(); |
| state_ = UNINITIALIZED; |
| } |
| |
| // Bool to track if we should turn the motors on or not. |
| bool disable = output == nullptr; |
| |
| intake_.Correct(position->intake); |
| |
| // There are 2 main zeroing paths, HIGH_ARM_ZERO and LOW_ARM_ZERO. |
| // |
| // HIGH_ARM_ZERO works by lifting the arm all the way up so it is clear, |
| // moving the shooter to be horizontal, moving the intake out, and then moving |
| // the arm back down. |
| // |
| // LOW_ARM_ZERO works by moving the intake out of the way, lifting the arm up, |
| // leveling the shooter, and then moving back down. |
| |
| if (intake_.error()) { |
| state_ = ESTOP; |
| } |
| |
| switch (state_) { |
| case UNINITIALIZED: |
| // Wait in the uninitialized state until intake is initialized. |
| LOG(DEBUG, "Uninitialized, waiting for intake\n"); |
| if (intake_.initialized()) { |
| state_ = DISABLED_INITIALIZED; |
| } |
| disable = true; |
| break; |
| |
| case DISABLED_INITIALIZED: |
| // Wait here until we are either fully zeroed while disabled, or we become |
| // enabled. |
| if (disable) { |
| if (intake_.zeroed()) { |
| state_ = SLOW_RUNNING; |
| } |
| } else { |
| if (intake_.angle() <= kIntakeMiddleAngle) { |
| state_ = ZERO_LIFT_INTAKE; |
| } else { |
| state_ = ZERO_LOWER_INTAKE; |
| } |
| } |
| |
| // Set the goals to where we are now so when we start back up, we don't |
| // jump. |
| intake_.ForceGoal(intake_.angle()); |
| // Set up the profile to be the zeroing profile. |
| intake_.AdjustProfile(0.5, 10); |
| |
| // We are not ready to start doing anything yet. |
| disable = true; |
| break; |
| |
| case ZERO_LOWER_INTAKE: |
| if (disable) { |
| state_ = DISABLED_INITIALIZED; |
| } else { |
| intake_.set_unprofiled_goal(kIntakeDownAngle); |
| |
| if (IsIntakeNear(kLooseTolerance)) { |
| // Close enough, start the next move. |
| state_ = RUNNING; |
| } |
| } |
| break; |
| |
| case ZERO_LIFT_INTAKE: |
| if (disable) { |
| state_ = DISABLED_INITIALIZED; |
| } else { |
| intake_.set_unprofiled_goal(kIntakeUpAngle); |
| |
| if (IsIntakeNear(kLooseTolerance)) { |
| // Close enough, start the next move. |
| state_ = RUNNING; |
| } |
| } |
| break; |
| |
| // These 4 cases are very similar. |
| case SLOW_RUNNING: |
| case RUNNING: { |
| if (disable) { |
| // If we are disabled, go to slow running if we are collided. |
| // Reset the profile to the current position so it moves well from here. |
| intake_.ForceGoal(intake_.angle()); |
| } |
| |
| double requested_intake = M_PI / 2.0; |
| |
| if (unsafe_goal) { |
| intake_.AdjustProfile(unsafe_goal->max_angular_velocity_intake, |
| unsafe_goal->max_angular_acceleration_intake); |
| |
| requested_intake = unsafe_goal->angle_intake; |
| } |
| // Push the request out to the hardware. |
| limit_checker_.UpdateGoal(requested_intake); |
| |
| // ESTOP if we hit the hard limits. |
| if (intake_.CheckHardLimits() && output) { |
| state_ = ESTOP; |
| } |
| } break; |
| |
| case ESTOP: |
| LOG(ERROR, "Estop\n"); |
| disable = true; |
| break; |
| } |
| |
| // Set the voltage limits. |
| const double max_voltage = |
| (state_ == RUNNING) ? kOperatingVoltage : kZeroingVoltage; |
| |
| intake_.set_max_voltage(max_voltage); |
| |
| // Calculate the loops for a cycle. |
| { |
| Eigen::Matrix<double, 3, 1> error = intake_.controller().error(); |
| status->intake.position_power = intake_.controller().K(0, 0) * error(0, 0); |
| status->intake.velocity_power = intake_.controller().K(0, 1) * error(1, 0); |
| } |
| |
| intake_.Update(disable); |
| |
| // Write out all the voltages. |
| if (output) { |
| output->voltage_intake = intake_.intake_voltage(); |
| |
| output->voltage_top_rollers = 0.0; |
| output->voltage_bottom_rollers = 0.0; |
| output->voltage_intake_rollers = 0.0; |
| |
| if (unsafe_goal) { |
| // Ball detector lights. |
| ::y2016_bot3::sensors::ball_detector.FetchLatest(); |
| bool ball_detected = false; |
| if (::y2016_bot3::sensors::ball_detector.get()) { |
| ball_detected = ::y2016_bot3::sensors::ball_detector->voltage > 2.5; |
| } |
| |
| // Intake. |
| if (unsafe_goal->force_intake || !ball_detected) { |
| output->voltage_top_rollers = ::std::max( |
| -kMaxIntakeTopVoltage, |
| ::std::min(unsafe_goal->voltage_top_rollers, kMaxIntakeTopVoltage)); |
| output->voltage_intake_rollers = |
| ::std::max(-kMaxIntakeRollersVoltage, |
| ::std::min(unsafe_goal->voltage_intake_rollers, |
| kMaxIntakeRollersVoltage)); |
| output->voltage_bottom_rollers = |
| ::std::max(-kMaxIntakeBottomVoltage, |
| ::std::min(unsafe_goal->voltage_bottom_rollers, |
| kMaxIntakeBottomVoltage)); |
| } else { |
| output->voltage_top_rollers = 0.0; |
| output->voltage_bottom_rollers = 0.0; |
| } |
| |
| // Traverse. |
| output->traverse_down = unsafe_goal->traverse_down; |
| } |
| } |
| |
| // Save debug/internal state. |
| status->zeroed = intake_.zeroed(); |
| |
| status->intake.angle = intake_.X_hat(0, 0); |
| status->intake.angular_velocity = intake_.X_hat(1, 0); |
| status->intake.goal_angle = intake_.goal(0, 0); |
| status->intake.goal_angular_velocity = intake_.goal(1, 0); |
| status->intake.unprofiled_goal_angle = intake_.unprofiled_goal(0, 0); |
| status->intake.unprofiled_goal_angular_velocity = |
| intake_.unprofiled_goal(1, 0); |
| status->intake.calculated_velocity = |
| (intake_.angle() - last_intake_angle_) / 0.005; |
| status->intake.voltage_error = intake_.X_hat(2, 0); |
| status->intake.estimator_state = intake_.IntakeEstimatorState(); |
| status->intake.feedforwards_power = intake_.controller().ff_U(0, 0); |
| |
| last_intake_angle_ = intake_.angle(); |
| |
| status->estopped = (state_ == ESTOP); |
| |
| status->state = state_; |
| |
| last_state_ = state_before_switch; |
| } |
| |
| constexpr double Intake::kZeroingVoltage; |
| constexpr double Intake::kOperatingVoltage; |
| constexpr double Intake::kLooseTolerance; |
| constexpr double Intake::kTightTolerance; |
| constexpr double Intake::kIntakeUpAngle; |
| constexpr double Intake::kIntakeMiddleAngle; |
| constexpr double Intake::kIntakeDownAngle; |
| |
| } // namespace intake |
| } // namespace control_loops |
| } // namespace y2016_bot3 |