blob: 4ff6391d4886c88e4cc38b72bab300619c03de43 [file] [log] [blame]
#include "frc971/zeroing/zeroing.h"
#include <cmath>
#include <vector>
namespace frc971 {
namespace zeroing {
void PopulateEstimatorState(const zeroing::ZeroingEstimator& estimator,
EstimatorState* state) {
state->error = estimator.error();
state->zeroed = estimator.zeroed();
state->position = estimator.position();
state->pot_position = estimator.filtered_position();
}
ZeroingEstimator::ZeroingEstimator(
const constants::ZeroingConstants& constants) {
index_diff_ = constants.index_difference;
max_sample_count_ = constants.average_filter_size;
known_index_pos_ = constants.measured_index_position;
allowable_encoder_error_ = constants.allowable_encoder_error;
start_pos_samples_.reserve(max_sample_count_);
Reset();
}
void ZeroingEstimator::Reset() {
samples_idx_ = 0;
start_pos_ = 0;
start_pos_samples_.clear();
zeroed_ = false;
wait_for_index_pulse_ = true;
last_used_index_pulse_count_ = 0;
first_start_pos_ = 0.0;
error_ = false;
}
void ZeroingEstimator::TriggerError() {
if (!error_) {
LOG(ERROR, "Manually triggered zeroing error.\n");
error_ = true;
}
}
double ZeroingEstimator::CalculateStartPosition(double start_average,
double latched_encoder) const {
// We calculate an aproximation of the value of the last index position.
// Also account for index pulses not lining up with integer multiples of the
// index_diff.
double index_pos = start_average + latched_encoder - known_index_pos_;
// We round index_pos to the closest valid value of the index.
double accurate_index_pos = (round(index_pos / index_diff_)) * index_diff_;
// Now we reverse the first calculation to get the accurate start position.
return accurate_index_pos - latched_encoder + known_index_pos_;
}
void ZeroingEstimator::UpdateEstimate(const PotAndIndexPosition& info) {
// We want to make sure that we encounter at least one index pulse while
// zeroing. So we take the index pulse count from the first sample after
// reset and wait for that count to change before we consider ourselves
// zeroed.
if (wait_for_index_pulse_) {
last_used_index_pulse_count_ = info.index_pulses;
wait_for_index_pulse_ = false;
}
if (start_pos_samples_.size() < max_sample_count_) {
start_pos_samples_.push_back(info.pot - info.encoder);
} else {
start_pos_samples_[samples_idx_] = info.pot - info.encoder;
}
// Drop the oldest sample when we run this function the next time around.
samples_idx_ = (samples_idx_ + 1) % max_sample_count_;
double sample_sum = 0.0;
for (size_t i = 0; i < start_pos_samples_.size(); ++i) {
sample_sum += start_pos_samples_[i];
}
// Calculates the average of the starting position.
double start_average = sample_sum / start_pos_samples_.size();
// If there are no index pulses to use or we don't have enough samples yet to
// have a well-filtered starting position then we use the filtered value as
// our best guess.
if (!zeroed_ &&
(info.index_pulses == last_used_index_pulse_count_ || !offset_ready())) {
start_pos_ = start_average;
} else if (!zeroed_ || last_used_index_pulse_count_ != info.index_pulses) {
// Note the accurate start position and the current index pulse count so
// that we only run this logic once per index pulse. That should be more
// resilient to corrupted intermediate data.
start_pos_ = CalculateStartPosition(start_average, info.latched_encoder);
last_used_index_pulse_count_ = info.index_pulses;
// TODO(austin): Reject encoder positions which have x% error rather than
// rounding to the closest index pulse.
// Save the first starting position.
if (!zeroed_) {
first_start_pos_ = start_pos_;
LOG(INFO, "latching start position %f\n", first_start_pos_);
}
// Now that we have an accurate starting position we can consider ourselves
// zeroed.
zeroed_ = true;
// Throw an error if first_start_pos is bigger/smaller than
// allowable_encoder_error_ * index_diff + start_pos.
if (::std::abs(first_start_pos_ - start_pos_) >
allowable_encoder_error_ * index_diff_) {
if (!error_) {
LOG(ERROR,
"Encoder ticks out of range since last index pulse. first start "
"position: %f recent starting position: %f, allowable error: %f\n",
first_start_pos_, start_pos_,
allowable_encoder_error_ * index_diff_);
error_ = true;
}
}
}
pos_ = start_pos_ + info.encoder;
filtered_position_ = start_average + info.encoder;
}
} // namespace zeroing
} // namespace frc971