| #ifndef AOS_EVENTS_EVENT_LOOP_H_ |
| #define AOS_EVENTS_EVENT_LOOP_H_ |
| |
| #include <atomic> |
| #include <string> |
| #include <string_view> |
| |
| #include "aos/configuration.h" |
| #include "aos/configuration_generated.h" |
| #include "aos/events/channel_preallocated_allocator.h" |
| #include "aos/events/event_loop_event.h" |
| #include "aos/events/event_loop_generated.h" |
| #include "aos/events/timing_statistics.h" |
| #include "aos/flatbuffers.h" |
| #include "aos/ipc_lib/data_alignment.h" |
| #include "aos/json_to_flatbuffer.h" |
| #include "aos/time/time.h" |
| #include "aos/util/phased_loop.h" |
| |
| #include "absl/container/btree_set.h" |
| #include "flatbuffers/flatbuffers.h" |
| #include "glog/logging.h" |
| |
| DECLARE_bool(timing_reports); |
| DECLARE_int32(timing_report_ms); |
| |
| namespace aos { |
| |
| class EventLoop; |
| class WatcherState; |
| |
| // Struct available on Watchers, Fetchers, Timers, and PhasedLoops with context |
| // about the current message. |
| struct Context { |
| // Time that the message was sent on this node, or the timer was triggered. |
| monotonic_clock::time_point monotonic_event_time; |
| // Realtime the message was sent on this node. This is set to min_time for |
| // Timers and PhasedLoops. |
| realtime_clock::time_point realtime_event_time; |
| |
| // For a single-node configuration, these two are identical to *_event_time. |
| // In a multinode configuration, these are the times that the message was |
| // sent on the original node. |
| monotonic_clock::time_point monotonic_remote_time; |
| realtime_clock::time_point realtime_remote_time; |
| |
| // The rest are only valid for Watchers and Fetchers. |
| // Index in the queue. |
| uint32_t queue_index; |
| // Index into the remote queue. Useful to determine if data was lost. In a |
| // single-node configuration, this will match queue_index. |
| uint32_t remote_queue_index; |
| |
| // Size of the data sent. |
| size_t size; |
| // Pointer to the data. |
| void *data; |
| }; |
| |
| // Raw version of fetcher. Contains a local variable that the fetcher will |
| // update. This is used for reflection and as an interface to implement typed |
| // fetchers. |
| class RawFetcher { |
| public: |
| RawFetcher(EventLoop *event_loop, const Channel *channel); |
| RawFetcher(const RawFetcher &) = delete; |
| RawFetcher &operator=(const RawFetcher &) = delete; |
| virtual ~RawFetcher(); |
| |
| // Fetches the next message in the queue without blocking. Returns true if |
| // there was a new message and we got it. |
| bool FetchNext(); |
| |
| // Fetches the latest message without blocking. |
| bool Fetch(); |
| |
| // Returns the channel this fetcher uses. |
| const Channel *channel() const { return channel_; } |
| // Returns the context for the current message. |
| const Context &context() const { return context_; } |
| |
| protected: |
| EventLoop *event_loop() { return event_loop_; } |
| |
| Context context_; |
| |
| private: |
| friend class EventLoop; |
| // Implementation |
| virtual std::pair<bool, monotonic_clock::time_point> DoFetchNext() = 0; |
| virtual std::pair<bool, monotonic_clock::time_point> DoFetch() = 0; |
| |
| EventLoop *event_loop_; |
| const Channel *channel_; |
| |
| internal::RawFetcherTiming timing_; |
| }; |
| |
| // Raw version of sender. Sends a block of data. This is used for reflection |
| // and as a building block to implement typed senders. |
| class RawSender { |
| public: |
| RawSender(EventLoop *event_loop, const Channel *channel); |
| RawSender(const RawSender &) = delete; |
| RawSender &operator=(const RawSender &) = delete; |
| |
| virtual ~RawSender(); |
| |
| // Sends a message without copying it. The users starts by copying up to |
| // size() bytes into the data backed by data(). They then call Send to send. |
| // Returns true on a successful send. |
| // If provided, monotonic_remote_time, realtime_remote_time, and |
| // remote_queue_index are attached to the message and are available in the |
| // context on the read side. If they are not populated, the read side will |
| // get the sent times instead. |
| virtual void *data() = 0; |
| virtual size_t size() = 0; |
| bool Send(size_t size, |
| aos::monotonic_clock::time_point monotonic_remote_time = |
| aos::monotonic_clock::min_time, |
| aos::realtime_clock::time_point realtime_remote_time = |
| aos::realtime_clock::min_time, |
| uint32_t remote_queue_index = 0xffffffffu); |
| |
| // Sends a single block of data by copying it. |
| // The remote arguments have the same meaning as in Send above. |
| bool Send(const void *data, size_t size, |
| aos::monotonic_clock::time_point monotonic_remote_time = |
| aos::monotonic_clock::min_time, |
| aos::realtime_clock::time_point realtime_remote_time = |
| aos::realtime_clock::min_time, |
| uint32_t remote_queue_index = 0xffffffffu); |
| |
| const Channel *channel() const { return channel_; } |
| |
| // Returns the time_points that the last message was sent at. |
| aos::monotonic_clock::time_point monotonic_sent_time() const { |
| return monotonic_sent_time_; |
| } |
| aos::realtime_clock::time_point realtime_sent_time() const { |
| return realtime_sent_time_; |
| } |
| // Returns the queue index that this was sent with. |
| uint32_t sent_queue_index() const { return sent_queue_index_; } |
| |
| // Returns the associated flatbuffers-style allocator. This must be |
| // deallocated before the message is sent. |
| ChannelPreallocatedAllocator *fbb_allocator() { |
| fbb_allocator_ = ChannelPreallocatedAllocator( |
| reinterpret_cast<uint8_t *>(data()), size(), channel()); |
| return &fbb_allocator_; |
| } |
| |
| protected: |
| EventLoop *event_loop() { return event_loop_; } |
| |
| aos::monotonic_clock::time_point monotonic_sent_time_ = |
| aos::monotonic_clock::min_time; |
| aos::realtime_clock::time_point realtime_sent_time_ = |
| aos::realtime_clock::min_time; |
| uint32_t sent_queue_index_ = 0xffffffff; |
| |
| private: |
| friend class EventLoop; |
| |
| virtual bool DoSend(const void *data, size_t size, |
| aos::monotonic_clock::time_point monotonic_remote_time, |
| aos::realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index) = 0; |
| virtual bool DoSend(size_t size, |
| aos::monotonic_clock::time_point monotonic_remote_time, |
| aos::realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index) = 0; |
| |
| EventLoop *event_loop_; |
| const Channel *channel_; |
| |
| internal::RawSenderTiming timing_; |
| |
| ChannelPreallocatedAllocator fbb_allocator_{nullptr, 0, nullptr}; |
| }; |
| |
| // Fetches the newest message from a channel. |
| // This provides a polling based interface for channels. |
| template <typename T> |
| class Fetcher { |
| public: |
| Fetcher() {} |
| |
| // Fetches the next message. Returns true if it fetched a new message. This |
| // method will only return messages sent after the Fetcher was created. |
| bool FetchNext() { |
| const bool result = fetcher_->FetchNext(); |
| if (result) { |
| CheckChannelDataAlignment(fetcher_->context().data, |
| fetcher_->context().size); |
| } |
| return result; |
| } |
| |
| // Fetches the most recent message. Returns true if it fetched a new message. |
| // This will return the latest message regardless of if it was sent before or |
| // after the fetcher was created. |
| bool Fetch() { |
| const bool result = fetcher_->Fetch(); |
| if (result) { |
| CheckChannelDataAlignment(fetcher_->context().data, |
| fetcher_->context().size); |
| } |
| return result; |
| } |
| |
| // Returns a pointer to the contained flatbuffer, or nullptr if there is no |
| // available message. |
| const T *get() const { |
| return fetcher_->context().data != nullptr |
| ? flatbuffers::GetRoot<T>( |
| reinterpret_cast<const char *>(fetcher_->context().data)) |
| : nullptr; |
| } |
| |
| // Returns the context holding timestamps and other metadata about the |
| // message. |
| const Context &context() const { return fetcher_->context(); } |
| |
| const T &operator*() const { return *get(); } |
| const T *operator->() const { return get(); } |
| |
| private: |
| friend class EventLoop; |
| Fetcher(::std::unique_ptr<RawFetcher> fetcher) |
| : fetcher_(::std::move(fetcher)) {} |
| ::std::unique_ptr<RawFetcher> fetcher_; |
| }; |
| |
| // Sends messages to a channel. |
| template <typename T> |
| class Sender { |
| public: |
| Sender() {} |
| |
| // Represents a single message about to be sent to the queue. |
| // The lifecycle goes: |
| // |
| // Builder builder = sender.MakeBuilder(); |
| // T::Builder t_builder = builder.MakeBuilder<T>(); |
| // Populate(&t_builder); |
| // builder.Send(t_builder.Finish()); |
| class Builder { |
| public: |
| Builder(RawSender *sender, ChannelPreallocatedAllocator *allocator) |
| : fbb_(allocator->size(), allocator), |
| allocator_(allocator), |
| sender_(sender) { |
| CheckChannelDataAlignment(allocator->data(), allocator->size()); |
| fbb_.ForceDefaults(true); |
| } |
| Builder() {} |
| Builder(const Builder &) = delete; |
| Builder(Builder &&) = default; |
| |
| Builder &operator=(const Builder &) = delete; |
| Builder &operator=(Builder &&) = default; |
| |
| flatbuffers::FlatBufferBuilder *fbb() { return &fbb_; } |
| |
| template <typename T2> |
| typename T2::Builder MakeBuilder() { |
| return typename T2::Builder(fbb_); |
| } |
| |
| bool Send(flatbuffers::Offset<T> offset) { |
| fbb_.Finish(offset); |
| const bool result = sender_->Send(fbb_.GetSize()); |
| // Ensure fbb_ knows it shouldn't access the memory any more. |
| fbb_ = flatbuffers::FlatBufferBuilder(); |
| return result; |
| } |
| |
| // CHECKs that this message was sent. |
| void CheckSent() { |
| CHECK(!allocator_->is_allocated()) << ": Message was not sent yet"; |
| } |
| |
| private: |
| flatbuffers::FlatBufferBuilder fbb_; |
| ChannelPreallocatedAllocator *allocator_; |
| RawSender *sender_; |
| }; |
| |
| // Constructs an above builder. |
| // |
| // Only a single one of these may be "alive" for this object at any point in |
| // time. After calling Send on the result, it is no longer "alive". This means |
| // that you must manually reset a variable holding the return value (by |
| // assigning a default-constructed Builder to it) before calling this method |
| // again to overwrite the value in the variable. |
| Builder MakeBuilder(); |
| |
| // Sends a prebuilt flatbuffer. |
| bool Send(const Flatbuffer<T> &flatbuffer); |
| |
| // Returns the name of the underlying queue. |
| const Channel *channel() const { return sender_->channel(); } |
| |
| operator bool() { |
| return sender_ ? true : false; |
| } |
| |
| // Returns the time_points that the last message was sent at. |
| aos::monotonic_clock::time_point monotonic_sent_time() const { |
| return sender_->monotonic_sent_time(); |
| } |
| aos::realtime_clock::time_point realtime_sent_time() const { |
| return sender_->realtime_sent_time(); |
| } |
| // Returns the queue index that this was sent with. |
| uint32_t sent_queue_index() const { return sender_->sent_queue_index(); } |
| |
| private: |
| friend class EventLoop; |
| Sender(std::unique_ptr<RawSender> sender) : sender_(std::move(sender)) {} |
| std::unique_ptr<RawSender> sender_; |
| }; |
| |
| // Interface for timers |
| class TimerHandler { |
| public: |
| virtual ~TimerHandler(); |
| |
| // Timer should sleep until base, base + offset, base + offset * 2, ... |
| // If repeat_offset isn't set, the timer only expires once. |
| virtual void Setup(monotonic_clock::time_point base, |
| monotonic_clock::duration repeat_offset = |
| ::aos::monotonic_clock::zero()) = 0; |
| |
| // Stop future calls to callback(). |
| virtual void Disable() = 0; |
| |
| // Sets and gets the name of the timer. Set this if you want a descriptive |
| // name in the timing report. |
| void set_name(std::string_view name) { name_ = std::string(name); } |
| const std::string_view name() const { return name_; } |
| |
| protected: |
| TimerHandler(EventLoop *event_loop, std::function<void()> fn); |
| |
| monotonic_clock::time_point Call( |
| std::function<monotonic_clock::time_point()> get_time, |
| monotonic_clock::time_point event_time); |
| |
| private: |
| friend class EventLoop; |
| |
| EventLoop *event_loop_; |
| // The function to call when Call is called. |
| std::function<void()> fn_; |
| std::string name_; |
| |
| internal::TimerTiming timing_; |
| }; |
| |
| // Interface for phased loops. They are built on timers. |
| class PhasedLoopHandler { |
| public: |
| virtual ~PhasedLoopHandler(); |
| |
| // Sets the interval and offset. Any changes to interval and offset only take |
| // effect when the handler finishes running. |
| void set_interval_and_offset(const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset) { |
| phased_loop_.set_interval_and_offset(interval, offset); |
| } |
| |
| // Sets and gets the name of the timer. Set this if you want a descriptive |
| // name in the timing report. |
| void set_name(std::string_view name) { name_ = std::string(name); } |
| const std::string_view name() const { return name_; } |
| |
| protected: |
| void Call(std::function<monotonic_clock::time_point()> get_time, |
| std::function<void(monotonic_clock::time_point)> schedule); |
| |
| PhasedLoopHandler(EventLoop *event_loop, std::function<void(int)> fn, |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset); |
| |
| private: |
| friend class EventLoop; |
| |
| void Reschedule(std::function<void(monotonic_clock::time_point)> schedule, |
| monotonic_clock::time_point monotonic_now) { |
| cycles_elapsed_ += phased_loop_.Iterate(monotonic_now); |
| schedule(phased_loop_.sleep_time()); |
| } |
| |
| virtual void Schedule(monotonic_clock::time_point sleep_time) = 0; |
| |
| EventLoop *event_loop_; |
| std::function<void(int)> fn_; |
| std::string name_; |
| time::PhasedLoop phased_loop_; |
| |
| int cycles_elapsed_ = 0; |
| |
| internal::TimerTiming timing_; |
| }; |
| |
| class EventLoop { |
| public: |
| EventLoop(const Configuration *configuration); |
| |
| virtual ~EventLoop(); |
| |
| // Current time. |
| virtual monotonic_clock::time_point monotonic_now() = 0; |
| virtual realtime_clock::time_point realtime_now() = 0; |
| |
| // Note, it is supported to create: |
| // multiple fetchers, and (one sender or one watcher) per <name, type> |
| // tuple. |
| |
| // Makes a class that will always fetch the most recent value |
| // sent to the provided channel. |
| template <typename T> |
| Fetcher<T> MakeFetcher(const std::string_view channel_name) { |
| const Channel *channel = |
| configuration::GetChannel(configuration_, channel_name, |
| T::GetFullyQualifiedName(), name(), node()); |
| CHECK(channel != nullptr) |
| << ": Channel { \"name\": \"" << channel_name << "\", \"type\": \"" |
| << T::GetFullyQualifiedName() << "\" } not found in config."; |
| |
| if (!configuration::ChannelIsReadableOnNode(channel, node())) { |
| LOG(FATAL) << "Channel { \"name\": \"" << channel_name |
| << "\", \"type\": \"" << T::GetFullyQualifiedName() |
| << "\" } is not able to be fetched on this node. Check your " |
| "configuration."; |
| } |
| |
| return Fetcher<T>(MakeRawFetcher(channel)); |
| } |
| |
| // Makes class that allows constructing and sending messages to |
| // the provided channel. |
| template <typename T> |
| Sender<T> MakeSender(const std::string_view channel_name) { |
| const Channel *channel = |
| configuration::GetChannel(configuration_, channel_name, |
| T::GetFullyQualifiedName(), name(), node()); |
| CHECK(channel != nullptr) |
| << ": Channel { \"name\": \"" << channel_name << "\", \"type\": \"" |
| << T::GetFullyQualifiedName() << "\" } not found in config for " |
| << name() << "."; |
| |
| if (!configuration::ChannelIsSendableOnNode(channel, node())) { |
| LOG(FATAL) << "Channel { \"name\": \"" << channel_name |
| << "\", \"type\": \"" << T::GetFullyQualifiedName() |
| << "\" } is not able to be sent on this node. Check your " |
| "configuration."; |
| } |
| |
| return Sender<T>(MakeRawSender(channel)); |
| } |
| |
| // This will watch messages sent to the provided channel. |
| // |
| // Watch is a functor that have a call signature like so: |
| // void Event(const MessageType& type); |
| // |
| // TODO(parker): Need to support ::std::bind. For now, use lambdas. |
| // TODO(austin): Do we need a functor? Or is a std::function good enough? |
| template <typename Watch> |
| void MakeWatcher(const std::string_view name, Watch &&w); |
| |
| // The passed in function will be called when the event loop starts. |
| // Use this to run code once the thread goes into "real-time-mode", |
| virtual void OnRun(::std::function<void()> on_run) = 0; |
| |
| // Gets the name of the event loop. This is the application name. |
| virtual const std::string_view name() const = 0; |
| |
| // Returns the node that this event loop is running on. Returns nullptr if we |
| // are running in single-node mode. |
| virtual const Node *node() const = 0; |
| |
| // Creates a timer that executes callback when the timer expires |
| // Returns a TimerHandle for configuration of the timer |
| virtual TimerHandler *AddTimer(::std::function<void()> callback) = 0; |
| |
| // Creates a timer that executes callback periodically at the specified |
| // interval and offset. Returns a PhasedLoopHandler for interacting with the |
| // timer. |
| virtual PhasedLoopHandler *AddPhasedLoop( |
| ::std::function<void(int)> callback, |
| const monotonic_clock::duration interval, |
| const monotonic_clock::duration offset = ::std::chrono::seconds(0)) = 0; |
| |
| // TODO(austin): OnExit for cleanup. |
| |
| // Threadsafe. |
| bool is_running() const { return is_running_.load(); } |
| |
| // Sets the scheduler priority to run the event loop at. This may not be |
| // called after we go into "real-time-mode". |
| virtual void SetRuntimeRealtimePriority(int priority) = 0; |
| virtual int priority() const = 0; |
| |
| // Fetches new messages from the provided channel (path, type). |
| // |
| // Note: this channel must be a member of the exact configuration object this |
| // was built with. |
| virtual std::unique_ptr<RawFetcher> MakeRawFetcher( |
| const Channel *channel) = 0; |
| |
| // Watches channel (name, type) for new messages. |
| virtual void MakeRawWatcher( |
| const Channel *channel, |
| std::function<void(const Context &context, const void *message)> |
| watcher) = 0; |
| |
| // Creates a raw sender for the provided channel. This is used for reflection |
| // based sending. |
| // Note: this ignores any node constraints. Ignore at your own peril. |
| virtual std::unique_ptr<RawSender> MakeRawSender(const Channel *channel) = 0; |
| |
| // Returns the context for the current callback. |
| const Context &context() const { return context_; } |
| |
| // Returns the configuration that this event loop was built with. |
| const Configuration *configuration() const { return configuration_; } |
| |
| // Prevents the event loop from sending a timing report. |
| void SkipTimingReport() { skip_timing_report_ = true; } |
| |
| // Prevents AOS_LOG being sent to message on /aos |
| void SkipAosLog() { skip_logger_ = true; } |
| |
| protected: |
| // Sets the name of the event loop. This is the application name. |
| virtual void set_name(const std::string_view name) = 0; |
| |
| void set_is_running(bool value) { is_running_.store(value); } |
| |
| // Validates that channel exists inside configuration_ and finds its index. |
| int ChannelIndex(const Channel *channel); |
| |
| // Returns the state for the watcher on the corresponding channel. This |
| // watcher must exist before calling this. |
| WatcherState *GetWatcherState(const Channel *channel); |
| |
| // Returns a Sender's protected RawSender |
| template <typename T> |
| static RawSender *GetRawSender(aos::Sender<T> *sender) { |
| return sender->sender_.get(); |
| } |
| |
| // Context available for watchers, timers, and phased loops. |
| Context context_; |
| |
| friend class RawSender; |
| friend class TimerHandler; |
| friend class RawFetcher; |
| friend class PhasedLoopHandler; |
| friend class WatcherState; |
| |
| // Methods used to implement timing reports. |
| void NewSender(RawSender *sender); |
| void DeleteSender(RawSender *sender); |
| TimerHandler *NewTimer(std::unique_ptr<TimerHandler> timer); |
| PhasedLoopHandler *NewPhasedLoop( |
| std::unique_ptr<PhasedLoopHandler> phased_loop); |
| void NewFetcher(RawFetcher *fetcher); |
| void DeleteFetcher(RawFetcher *fetcher); |
| WatcherState *NewWatcher(std::unique_ptr<WatcherState> watcher); |
| |
| // Tracks that we have a (single) watcher on the given channel. |
| void TakeWatcher(const Channel *channel); |
| // Tracks that we have at least one sender on the given channel. |
| void TakeSender(const Channel *channel); |
| |
| std::vector<RawSender *> senders_; |
| std::vector<RawFetcher *> fetchers_; |
| |
| std::vector<std::unique_ptr<TimerHandler>> timers_; |
| std::vector<std::unique_ptr<PhasedLoopHandler>> phased_loops_; |
| std::vector<std::unique_ptr<WatcherState>> watchers_; |
| |
| void SendTimingReport(); |
| void UpdateTimingReport(); |
| void MaybeScheduleTimingReports(); |
| |
| std::unique_ptr<RawSender> timing_report_sender_; |
| |
| // Tracks which event sources (timers and watchers) have data, and which |
| // don't. Added events may not change their event_time(). |
| // TODO(austin): Test case 1: timer triggers at t1, handler takes until after |
| // t2 to run, t2 should then be picked up without a context switch. |
| void AddEvent(EventLoopEvent *event); |
| void RemoveEvent(EventLoopEvent *event); |
| size_t EventCount() const { return events_.size(); } |
| EventLoopEvent *PopEvent(); |
| EventLoopEvent *PeekEvent() { return events_.front(); } |
| void ReserveEvents(); |
| |
| std::vector<EventLoopEvent *> events_; |
| |
| // If true, don't send AOS_LOG to /aos |
| bool skip_logger_ = false; |
| |
| private: |
| virtual pid_t GetTid() = 0; |
| |
| FlatbufferDetachedBuffer<timing::Report> timing_report_; |
| |
| ::std::atomic<bool> is_running_{false}; |
| |
| const Configuration *configuration_; |
| |
| // If true, don't send out timing reports. |
| bool skip_timing_report_ = false; |
| |
| absl::btree_set<const Channel *> taken_watchers_, taken_senders_; |
| }; |
| |
| } // namespace aos |
| |
| #include "aos/events/event_loop_tmpl.h" |
| |
| #endif // AOS_EVENTS_EVENT_LOOP_H |