blob: 9b70dbd908749116a1e7cbb18af5d816c9091554 [file] [log] [blame]
#!/usr/bin/python
import numpy
import sys
from frc971.control_loops.python import control_loop
from frc971.control_loops.python import controls
from matplotlib import pylab
import gflags
import glog
FLAGS = gflags.FLAGS
try:
gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
except gflags.DuplicateFlagError:
pass
class Shoulder(control_loop.ControlLoop):
def __init__(self, name="Shoulder", mass=None):
super(Shoulder, self).__init__(name)
# TODO(constants): Update all of these & retune poles.
# Stall Torque in N m
self.stall_torque = 0.71
# Stall Current in Amps
self.stall_current = 134
# Free Speed in RPM
self.free_speed = 18730
# Free Current in Amps
self.free_current = 0.7
# Resistance of the motor
self.R = 12.0 / self.stall_current
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(12.0 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio
self.G = (56.0 / 12.0) * (64.0 / 14.0) * (72.0 / 18.0) * (58.0 / 16.0)
self.J = 3.0
# Control loop time step
self.dt = 0.005
# State is [position, velocity]
# Input is [Voltage]
C1 = self.G * self.G * self.Kt / (self.R * self.J * self.Kv)
C2 = self.Kt * self.G / (self.J * self.R)
self.A_continuous = numpy.matrix(
[[0, 1],
[0, -C1]])
# Start with the unmodified input
self.B_continuous = numpy.matrix(
[[0],
[C2]])
self.C = numpy.matrix([[1, 0]])
self.D = numpy.matrix([[0]])
self.A, self.B = self.ContinuousToDiscrete(
self.A_continuous, self.B_continuous, self.dt)
controllability = controls.ctrb(self.A, self.B)
q_pos = 0.14
q_vel = 4.5
self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0],
[0.0, (1.0 / (q_vel ** 2.0))]])
self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0))]])
self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
self.Kff = controls.TwoStateFeedForwards(self.B, self.Q)
glog.debug('Poles are %s for %s',
repr(numpy.linalg.eig(self.A - self.B * self.K)[0]), self._name)
q_pos = 0.05
q_vel = 2.65
self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0],
[0.0, (q_vel ** 2.0)]])
r_volts = 0.025
self.R = numpy.matrix([[(r_volts ** 2.0)]])
self.KalmanGain, self.Q_steady = controls.kalman(
A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
self.L = self.A * self.KalmanGain
# The box formed by U_min and U_max must encompass all possible values,
# or else Austin's code gets angry.
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
self.InitializeState()
class IntegralShoulder(Shoulder):
def __init__(self, name="IntegralShoulder"):
super(IntegralShoulder, self).__init__(name=name)
self.A_continuous_unaugmented = self.A_continuous
self.B_continuous_unaugmented = self.B_continuous
self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
self.A_continuous[0:2, 2] = self.B_continuous_unaugmented
self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
self.C_unaugmented = self.C
self.C = numpy.matrix(numpy.zeros((1, 3)))
self.C[0:1, 0:2] = self.C_unaugmented
self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, self.dt)
q_pos = 0.08
q_vel = 4.00
q_voltage = 6.0
self.Q = numpy.matrix([[(q_pos ** 2.0), 0.0, 0.0],
[0.0, (q_vel ** 2.0), 0.0],
[0.0, 0.0, (q_voltage ** 2.0)]])
r_pos = 0.05
self.R = numpy.matrix([[(r_pos ** 2.0)]])
self.KalmanGain, self.Q_steady = controls.kalman(
A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
self.L = self.A * self.KalmanGain
self.K_unaugmented = self.K
self.K = numpy.matrix(numpy.zeros((1, 3)))
self.K[0, 0:2] = self.K_unaugmented
self.K[0, 2] = 1
self.Kff_unaugmented = self.Kff
self.Kff = numpy.matrix(numpy.zeros((1, 3)))
self.Kff[0, 0:2] = self.Kff_unaugmented
self.InitializeState()
class ScenarioPlotter(object):
def __init__(self):
# Various lists for graphing things.
self.t = []
self.x = []
self.v = []
self.a = []
self.x_hat = []
self.u = []
self.offset = []
def run_test(self, shoulder, goal, iterations=200, controller_shoulder=None,
observer_shoulder=None):
"""Runs the shoulder plant with an initial condition and goal.
Test for whether the goal has been reached and whether the separation
goes outside of the initial and goal values by more than
max_separation_error.
Prints out something for a failure of either condition and returns
False if tests fail.
Args:
shoulder: shoulder object to use.
goal: goal state.
iterations: Number of timesteps to run the model for.
controller_shoulder: Shoulder object to get K from, or None if we should
use shoulder.
observer_shoulder: Shoulder object to use for the observer, or None if we should
use the actual state.
"""
if controller_shoulder is None:
controller_shoulder = shoulder
vbat = 12.0
if self.t:
initial_t = self.t[-1] + shoulder.dt
else:
initial_t = 0
for i in xrange(iterations):
X_hat = shoulder.X
if observer_shoulder is not None:
X_hat = observer_shoulder.X_hat
self.x_hat.append(observer_shoulder.X_hat[0, 0])
U = controller_shoulder.K * (goal - X_hat)
U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat)
self.x.append(shoulder.X[0, 0])
if self.v:
last_v = self.v[-1]
else:
last_v = 0
self.v.append(shoulder.X[1, 0])
self.a.append((self.v[-1] - last_v) / shoulder.dt)
if observer_shoulder is not None:
observer_shoulder.Y = shoulder.Y
observer_shoulder.CorrectObserver(U)
self.offset.append(observer_shoulder.X_hat[2, 0])
shoulder.Update(U + 2.0)
if observer_shoulder is not None:
observer_shoulder.PredictObserver(U)
self.t.append(initial_t + i * shoulder.dt)
self.u.append(U[0, 0])
glog.debug('Time: %f', self.t[-1])
def Plot(self):
pylab.subplot(3, 1, 1)
pylab.plot(self.t, self.x, label='x')
pylab.plot(self.t, self.x_hat, label='x_hat')
pylab.legend()
pylab.subplot(3, 1, 2)
pylab.plot(self.t, self.u, label='u')
pylab.plot(self.t, self.offset, label='voltage_offset')
pylab.legend()
pylab.subplot(3, 1, 3)
pylab.plot(self.t, self.a, label='a')
pylab.legend()
pylab.show()
def main(argv):
argv = FLAGS(argv)
scenario_plotter = ScenarioPlotter()
shoulder = Shoulder()
shoulder_controller = IntegralShoulder()
observer_shoulder = IntegralShoulder()
# Test moving the shoulder with constant separation.
initial_X = numpy.matrix([[0.0], [0.0]])
R = numpy.matrix([[numpy.pi / 2.0], [0.0], [0.0]])
scenario_plotter.run_test(shoulder, goal=R, controller_shoulder=shoulder_controller,
observer_shoulder=observer_shoulder, iterations=200)
if FLAGS.plot:
scenario_plotter.Plot()
# Write the generated constants out to a file.
if len(argv) != 5:
glog.fatal('Expected .h file name and .cc file name for the shoulder and integral shoulder.')
else:
namespaces = ['y2016', 'control_loops', 'superstructure']
shoulder = Shoulder("Shoulder")
loop_writer = control_loop.ControlLoopWriter('Shoulder', [shoulder],
namespaces=namespaces)
loop_writer.Write(argv[1], argv[2])
integral_shoulder = IntegralShoulder("IntegralShoulder")
integral_loop_writer = control_loop.ControlLoopWriter("IntegralShoulder", [integral_shoulder],
namespaces=namespaces)
integral_loop_writer.Write(argv[3], argv[4])
if __name__ == '__main__':
sys.exit(main(sys.argv))