| #include "frc971/control_loops/drivetrain/drivetrain.h" |
| |
| #include <stdio.h> |
| #include <sched.h> |
| #include <cmath> |
| #include <memory> |
| #include "Eigen/Dense" |
| |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/queue.h" |
| #include "aos/controls/polytope.h" |
| #include "aos/common/commonmath.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_motor_plant.h" |
| #include "frc971/control_loops/drivetrain/polydrivetrain_motor_plant.h" |
| #include "frc971/control_loops/drivetrain/polydrivetrain_cim_plant.h" |
| #include "frc971/control_loops/drivetrain/drivetrain.q.h" |
| #include "frc971/queues/GyroAngle.q.h" |
| #include "frc971/queues/Piston.q.h" |
| #include "frc971/constants.h" |
| |
| using frc971::sensors::gyro; |
| |
| namespace frc971 { |
| namespace control_loops { |
| |
| // Width of the robot. |
| const double width = 22.0 / 100.0 * 2.54; |
| |
| Eigen::Matrix<double, 2, 1> CoerceGoal(aos::controls::HPolytope<2> ®ion, |
| const Eigen::Matrix<double, 1, 2> &K, |
| double w, |
| const Eigen::Matrix<double, 2, 1> &R) { |
| if (region.IsInside(R)) { |
| return R; |
| } |
| Eigen::Matrix<double, 2, 1> parallel_vector; |
| Eigen::Matrix<double, 2, 1> perpendicular_vector; |
| perpendicular_vector = K.transpose().normalized(); |
| parallel_vector << perpendicular_vector(1, 0), -perpendicular_vector(0, 0); |
| |
| aos::controls::HPolytope<1> t_poly( |
| region.H() * parallel_vector, |
| region.k() - region.H() * perpendicular_vector * w); |
| |
| Eigen::Matrix<double, 1, Eigen::Dynamic> vertices = t_poly.Vertices(); |
| if (vertices.innerSize() > 0) { |
| double min_distance_sqr = 0; |
| Eigen::Matrix<double, 2, 1> closest_point; |
| for (int i = 0; i < vertices.innerSize(); i++) { |
| Eigen::Matrix<double, 2, 1> point; |
| point = parallel_vector * vertices(0, i) + perpendicular_vector * w; |
| const double length = (R - point).squaredNorm(); |
| if (i == 0 || length < min_distance_sqr) { |
| closest_point = point; |
| min_distance_sqr = length; |
| } |
| } |
| return closest_point; |
| } else { |
| Eigen::Matrix<double, 2, Eigen::Dynamic> region_vertices = |
| region.Vertices(); |
| double min_distance; |
| int closest_i = 0; |
| for (int i = 0; i < region_vertices.outerSize(); i++) { |
| const double length = ::std::abs( |
| (perpendicular_vector.transpose() * (region_vertices.col(i)))(0, 0)); |
| if (i == 0 || length < min_distance) { |
| closest_i = i; |
| min_distance = length; |
| } |
| } |
| return region_vertices.col(closest_i); |
| } |
| } |
| |
| class DrivetrainMotorsSS { |
| public: |
| DrivetrainMotorsSS () |
| : loop_(new StateFeedbackLoop<4, 2, 2>(MakeDrivetrainLoop())) { |
| _offset = 0; |
| _integral_offset = 0; |
| _left_goal = 0.0; |
| _right_goal = 0.0; |
| _raw_left = 0.0; |
| _raw_right = 0.0; |
| _control_loop_driving = false; |
| } |
| void SetGoal(double left, double left_velocity, double right, double right_velocity) { |
| _left_goal = left; |
| _right_goal = right; |
| loop_->R << left, left_velocity, right, right_velocity; |
| } |
| void SetRawPosition(double left, double right) { |
| _raw_right = right; |
| _raw_left = left; |
| loop_->Y << left, right; |
| } |
| void SetPosition( |
| double left, double right, double gyro, bool control_loop_driving) { |
| // Decay the offset quickly because this gyro is great. |
| _offset = (0.25) * (right - left - gyro * width) / 2.0 + 0.75 * _offset; |
| //const double angle_error = (_right_goal - _left_goal) / width - (_raw_right - _offset - _raw_left - _offset) / width; |
| // TODO(aschuh): Add in the gyro. |
| _integral_offset = 0.0; |
| _offset = 0.0; |
| _gyro = gyro; |
| _control_loop_driving = control_loop_driving; |
| SetRawPosition(left, right); |
| //LOG(DEBUG, "Left %f->%f Right %f->%f Gyro %f aerror %f ioff %f\n", left + _offset, _left_goal, right - _offset, _right_goal, gyro, angle_error, _integral_offset); |
| } |
| |
| void Update(bool update_observer, bool stop_motors) { |
| loop_->Update(update_observer, stop_motors); |
| } |
| |
| void SendMotors(Drivetrain::Output *output) { |
| if (output) { |
| output->left_voltage = loop_->U(0, 0); |
| output->right_voltage = loop_->U(1, 0); |
| } |
| } |
| void PrintMotors() const { |
| // LOG(DEBUG, "Left Power %f Right Power %f lg %f rg %f le %f re %f gyro %f\n", U[0], U[1], R[0], R[2], Y[0], Y[1], _gyro); |
| ::Eigen::Matrix<double, 4, 1> E = loop_->R - loop_->X_hat; |
| LOG(DEBUG, "E[0, 0]: %f E[1, 0] %f E[2, 0] %f E[3, 0] %f\n", E(0, 0), E(1, 0), E(2, 0), E(3, 0)); |
| } |
| |
| private: |
| ::std::unique_ptr<StateFeedbackLoop<4, 2, 2>> loop_; |
| |
| double _integral_offset; |
| double _offset; |
| double _gyro; |
| double _left_goal; |
| double _right_goal; |
| double _raw_left; |
| double _raw_right; |
| bool _control_loop_driving; |
| }; |
| |
| class PolyDrivetrain { |
| public: |
| |
| enum Gear { |
| HIGH, |
| LOW, |
| SHIFTING_UP, |
| SHIFTING_DOWN |
| }; |
| // Stall Torque in N m |
| static constexpr double kStallTorque = 2.42; |
| // Stall Current in Amps |
| static constexpr double kStallCurrent = 133; |
| // Free Speed in RPM. Used number from last year. |
| static constexpr double kFreeSpeed = 4650.0; |
| // Free Current in Amps |
| static constexpr double kFreeCurrent = 2.7; |
| // Moment of inertia of the drivetrain in kg m^2 |
| // Just borrowed from last year. |
| static constexpr double J = 6.4; |
| // Mass of the robot, in kg. |
| static constexpr double m = 68; |
| // Radius of the robot, in meters (from last year). |
| static constexpr double rb = 0.617998644 / 2.0; |
| static constexpr double kWheelRadius = 0.04445; |
| // Resistance of the motor, divided by the number of motors. |
| static constexpr double kR = (12.0 / kStallCurrent / 4 + 0.03) / (0.93 * 0.93); |
| // Motor velocity constant |
| static constexpr double Kv = |
| ((kFreeSpeed / 60.0 * 2.0 * M_PI) / (12.0 - kR * kFreeCurrent)); |
| // Torque constant |
| static constexpr double Kt = kStallTorque / kStallCurrent; |
| |
| PolyDrivetrain() |
| : U_Poly_((Eigen::Matrix<double, 4, 2>() << /*[[*/ 1, 0 /*]*/, |
| /*[*/ -1, 0 /*]*/, |
| /*[*/ 0, 1 /*]*/, |
| /*[*/ 0, -1 /*]]*/).finished(), |
| (Eigen::Matrix<double, 4, 1>() << /*[[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]]*/).finished()), |
| loop_(new StateFeedbackLoop<2, 2, 2>(MakeVDrivetrainLoop())), |
| left_cim_(new StateFeedbackLoop<1, 1, 1>(MakeCIMLoop())), |
| right_cim_(new StateFeedbackLoop<1, 1, 1>(MakeCIMLoop())), |
| ttrust_(1.1), |
| wheel_(0.0), |
| throttle_(0.0), |
| quickturn_(false), |
| stale_count_(0), |
| position_time_delta_(0.01), |
| left_gear_(LOW), |
| right_gear_(LOW), |
| counter_(0) { |
| |
| last_position_.Zero(); |
| position_.Zero(); |
| } |
| static bool IsInGear(Gear gear) { return gear == LOW || gear == HIGH; } |
| |
| static double MotorSpeed(double shifter_position, double velocity) { |
| // TODO(austin): G_high, G_low and kWheelRadius |
| if (shifter_position > 0.57) { |
| return velocity / constants::GetValues().high_gear_ratio / kWheelRadius; |
| } else { |
| return velocity / constants::GetValues().low_gear_ratio / kWheelRadius; |
| } |
| } |
| |
| Gear ComputeGear(double velocity, Gear current) { |
| const double low_omega = MotorSpeed(0, ::std::abs(velocity)); |
| const double high_omega = MotorSpeed(1.0, ::std::abs(velocity)); |
| |
| LOG(DEBUG, "velocity %f\n", velocity); |
| double high_torque = ((12.0 - high_omega / Kv) * Kt / kR); |
| double low_torque = ((12.0 - low_omega / Kv) * Kt / kR); |
| double high_power = high_torque * high_omega; |
| double low_power = low_torque * low_omega; |
| if ((current == HIGH || |
| high_power > low_power + /*50*/50) && |
| high_power > low_power - /*50*/200) { |
| return HIGH; |
| } else { |
| return LOW; |
| } |
| } |
| |
| void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) { |
| const double kWheelNonLinearity = 0.3; |
| // Apply a sin function that's scaled to make it feel better. |
| const double angular_range = M_PI_2 * kWheelNonLinearity; |
| wheel_ = sin(angular_range * wheel) / sin(angular_range); |
| wheel_ = sin(angular_range * wheel_) / sin(angular_range); |
| quickturn_ = quickturn; |
| |
| static const double kThrottleDeadband = 0.05; |
| if (::std::abs(throttle) < kThrottleDeadband) { |
| throttle_ = 0; |
| } else { |
| throttle_ = copysign((::std::abs(throttle) - kThrottleDeadband) / |
| (1.0 - kThrottleDeadband), throttle); |
| } |
| |
| // TODO(austin): Fix the upshift logic to include states. |
| Gear requested_gear; |
| if (constants::GetValues().clutch_transmission) { |
| const double current_left_velocity = |
| (position_.left_encoder - last_position_.left_encoder) / |
| position_time_delta_; |
| const double current_right_velocity = |
| (position_.right_encoder - last_position_.right_encoder) / |
| position_time_delta_; |
| |
| Gear left_requested = ComputeGear(current_left_velocity, left_gear_); |
| Gear right_requested = ComputeGear(current_right_velocity, right_gear_); |
| requested_gear = |
| (left_requested == HIGH || right_requested == HIGH) ? HIGH : LOW; |
| } else { |
| requested_gear = highgear ? HIGH : LOW; |
| } |
| |
| const Gear shift_up = |
| constants::GetValues().clutch_transmission ? HIGH : SHIFTING_UP; |
| const Gear shift_down = |
| constants::GetValues().clutch_transmission ? LOW : SHIFTING_DOWN; |
| |
| if (left_gear_ != requested_gear) { |
| if (IsInGear(left_gear_)) { |
| if (requested_gear == HIGH) { |
| left_gear_ = shift_up; |
| } else { |
| left_gear_ = shift_down; |
| } |
| } |
| } |
| if (right_gear_ != requested_gear) { |
| if (IsInGear(right_gear_)) { |
| if (requested_gear == HIGH) { |
| right_gear_ = shift_up; |
| } else { |
| right_gear_ = shift_down; |
| } |
| } |
| } |
| } |
| void SetPosition(const Drivetrain::Position *position) { |
| if (position == NULL) { |
| ++stale_count_; |
| } else { |
| last_position_ = position_; |
| position_ = *position; |
| position_time_delta_ = (stale_count_ + 1) * 0.01; |
| stale_count_ = 0; |
| } |
| |
| if (position) { |
| // Switch to the correct controller. |
| // TODO(austin): Un-hard code 0.57 |
| if (position->left_shifter_position < 0.57) { |
| if (position->right_shifter_position < 0.57 || right_gear_ == LOW) { |
| LOG(DEBUG, "Loop Left low, Right low\n"); |
| loop_->set_controller_index(0); |
| } else { |
| LOG(DEBUG, "Loop Left low, Right high\n"); |
| loop_->set_controller_index(1); |
| } |
| } else { |
| if (position->right_shifter_position < 0.57 || left_gear_ == LOW) { |
| LOG(DEBUG, "Loop Left high, Right low\n"); |
| loop_->set_controller_index(2); |
| } else { |
| LOG(DEBUG, "Loop Left high, Right high\n"); |
| loop_->set_controller_index(3); |
| } |
| } |
| switch (left_gear_) { |
| case LOW: |
| LOG(DEBUG, "Left is in low\n"); |
| break; |
| case HIGH: |
| LOG(DEBUG, "Left is in high\n"); |
| break; |
| case SHIFTING_UP: |
| LOG(DEBUG, "Left is shifting up\n"); |
| break; |
| case SHIFTING_DOWN: |
| LOG(DEBUG, "Left is shifting down\n"); |
| break; |
| } |
| switch (right_gear_) { |
| case LOW: |
| LOG(DEBUG, "Right is in low\n"); |
| break; |
| case HIGH: |
| LOG(DEBUG, "Right is in high\n"); |
| break; |
| case SHIFTING_UP: |
| LOG(DEBUG, "Right is shifting up\n"); |
| break; |
| case SHIFTING_DOWN: |
| LOG(DEBUG, "Right is shifting down\n"); |
| break; |
| } |
| // TODO(austin): Constants. |
| if (position->left_shifter_position > 0.9 && left_gear_ == SHIFTING_UP) { |
| left_gear_ = HIGH; |
| } |
| if (position->left_shifter_position < 0.1 && left_gear_ == SHIFTING_DOWN) { |
| left_gear_ = LOW; |
| } |
| if (position->right_shifter_position > 0.9 && right_gear_ == SHIFTING_UP) { |
| right_gear_ = HIGH; |
| } |
| if (position->right_shifter_position < 0.1 && right_gear_ == SHIFTING_DOWN) { |
| right_gear_ = LOW; |
| } |
| } |
| } |
| |
| double FilterVelocity(double throttle) { |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<double, 2, 2> FF_high = |
| loop_->controller(kHighGearController).plant.B.inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - |
| loop_->controller(kHighGearController).plant.A); |
| |
| ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| const double high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const double adjusted_ff_voltage = ::aos::Clip( |
| throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return ((adjusted_ff_voltage + |
| ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) / |
| 2.0) / |
| (ttrust_ * min_K_sum + min_FF_sum)); |
| } |
| |
| double MaxVelocity() { |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<double, 2, 2> FF_high = |
| loop_->controller(kHighGearController).plant.B.inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - |
| loop_->controller(kHighGearController).plant.A); |
| |
| ::Eigen::Matrix<double, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const double min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| //const double min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| const double high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const double adjusted_ff_voltage = ::aos::Clip( |
| 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return adjusted_ff_voltage / min_FF_sum; |
| } |
| |
| void Update() { |
| // TODO(austin): Observer for the current velocity instead of difference |
| // calculations. |
| ++counter_; |
| const double current_left_velocity = |
| (position_.left_encoder - last_position_.left_encoder) / |
| position_time_delta_; |
| const double current_right_velocity = |
| (position_.right_encoder - last_position_.right_encoder) / |
| position_time_delta_; |
| const double left_motor_speed = |
| MotorSpeed(position_.left_shifter_position, current_left_velocity); |
| const double right_motor_speed = |
| MotorSpeed(position_.right_shifter_position, current_right_velocity); |
| |
| // Reset the CIM model to the current conditions to be ready for when we shift. |
| if (IsInGear(left_gear_)) { |
| left_cim_->X_hat(0, 0) = left_motor_speed; |
| LOG(DEBUG, "Setting left CIM to %f at robot speed %f\n", left_motor_speed, |
| current_left_velocity); |
| } |
| if (IsInGear(right_gear_)) { |
| right_cim_->X_hat(0, 0) = right_motor_speed; |
| LOG(DEBUG, "Setting right CIM to %f at robot speed %f\n", |
| right_motor_speed, current_right_velocity); |
| } |
| LOG(DEBUG, "robot speed l=%f r=%f\n", current_left_velocity, |
| current_right_velocity); |
| |
| if (IsInGear(left_gear_) && IsInGear(right_gear_)) { |
| // FF * X = U (steady state) |
| const Eigen::Matrix<double, 2, 2> FF = |
| loop_->B().inverse() * |
| (Eigen::Matrix<double, 2, 2>::Identity() - loop_->A()); |
| |
| // Invert the plant to figure out how the velocity filter would have to |
| // work |
| // out in order to filter out the forwards negative inertia. |
| // This math assumes that the left and right power and velocity are |
| // equals, |
| // and that the plant is the same on the left and right. |
| const double fvel = FilterVelocity(throttle_); |
| |
| const double sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0); |
| double steering_velocity; |
| if (quickturn_) { |
| steering_velocity = wheel_ * MaxVelocity(); |
| } else { |
| steering_velocity = ::std::abs(fvel) * wheel_; |
| } |
| const double left_velocity = fvel - steering_velocity; |
| const double right_velocity = fvel + steering_velocity; |
| |
| // Integrate velocity to get the position. |
| // This position is used to get integral control. |
| loop_->R << left_velocity, right_velocity; |
| |
| if (!quickturn_) { |
| // K * R = w |
| Eigen::Matrix<double, 1, 2> equality_k; |
| equality_k << 1 + sign_svel, -(1 - sign_svel); |
| const double equality_w = 0.0; |
| |
| // Construct a constraint on R by manipulating the constraint on U |
| ::aos::controls::HPolytope<2> R_poly = ::aos::controls::HPolytope<2>( |
| U_Poly_.H() * (loop_->K() + FF), |
| U_Poly_.k() + U_Poly_.H() * loop_->K() * loop_->X_hat); |
| |
| // Limit R back inside the box. |
| loop_->R = CoerceGoal(R_poly, equality_k, equality_w, loop_->R); |
| } |
| |
| const Eigen::Matrix<double, 2, 1> FF_volts = FF * loop_->R; |
| const Eigen::Matrix<double, 2, 1> U_ideal = |
| loop_->K() * (loop_->R - loop_->X_hat) + FF_volts; |
| |
| for (int i = 0; i < 2; i++) { |
| loop_->U[i] = ::aos::Clip(U_ideal[i], -12, 12); |
| } |
| |
| // TODO(austin): Model this better. |
| // TODO(austin): Feed back? |
| loop_->X_hat = loop_->A() * loop_->X_hat + loop_->B() * loop_->U; |
| } else { |
| // Any motor is not in gear. Speed match. |
| ::Eigen::Matrix<double, 1, 1> R_left; |
| R_left(0, 0) = left_motor_speed; |
| const double wiggle = (static_cast<double>((counter_ % 4) / 2) - 0.5) * 3.5; |
| |
| loop_->U(0, 0) = |
| ::aos::Clip((R_left / Kv)(0, 0) + wiggle, -position_.battery_voltage, |
| position_.battery_voltage); |
| right_cim_->X_hat = right_cim_->A() * right_cim_->X_hat + |
| right_cim_->B() * loop_->U(0, 0); |
| |
| ::Eigen::Matrix<double, 1, 1> R_right; |
| R_right(0, 0) = right_motor_speed; |
| loop_->U(1, 0) = |
| ::aos::Clip((R_right / Kv)(0, 0) + wiggle, -position_.battery_voltage, |
| position_.battery_voltage); |
| right_cim_->X_hat = right_cim_->A() * right_cim_->X_hat + |
| right_cim_->B() * loop_->U(1, 0); |
| loop_->U *= 12.0 / position_.battery_voltage; |
| } |
| } |
| |
| void SendMotors(Drivetrain::Output *output) { |
| LOG(DEBUG, "left pwm: %f right pwm: %f wheel: %f throttle: %f\n", |
| loop_->U(0, 0), loop_->U(1, 0), wheel_, throttle_); |
| if (output != NULL) { |
| output->left_voltage = loop_->U(0, 0); |
| output->right_voltage = loop_->U(1, 0); |
| } |
| // Go in high gear if anything wants to be in high gear. |
| // TODO(austin): Seperate these. |
| if (left_gear_ == HIGH || left_gear_ == SHIFTING_UP || |
| right_gear_ == HIGH || right_gear_ == SHIFTING_UP) { |
| shifters.MakeWithBuilder().set(false).Send(); |
| } else { |
| shifters.MakeWithBuilder().set(true).Send(); |
| } |
| } |
| |
| private: |
| const ::aos::controls::HPolytope<2> U_Poly_; |
| |
| ::std::unique_ptr<StateFeedbackLoop<2, 2, 2>> loop_; |
| ::std::unique_ptr<StateFeedbackLoop<1, 1, 1>> left_cim_; |
| ::std::unique_ptr<StateFeedbackLoop<1, 1, 1>> right_cim_; |
| |
| const double ttrust_; |
| double wheel_; |
| double throttle_; |
| bool quickturn_; |
| int stale_count_; |
| double position_time_delta_; |
| Gear left_gear_; |
| Gear right_gear_; |
| Drivetrain::Position last_position_; |
| Drivetrain::Position position_; |
| int counter_; |
| }; |
| |
| |
| class DrivetrainMotorsOL { |
| public: |
| DrivetrainMotorsOL() { |
| _old_wheel = 0.0; |
| wheel_ = 0.0; |
| throttle_ = 0.0; |
| quickturn_ = false; |
| highgear_ = true; |
| _neg_inertia_accumulator = 0.0; |
| _left_pwm = 0.0; |
| _right_pwm = 0.0; |
| } |
| void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) { |
| wheel_ = wheel; |
| throttle_ = throttle; |
| quickturn_ = quickturn; |
| highgear_ = highgear; |
| _left_pwm = 0.0; |
| _right_pwm = 0.0; |
| } |
| void Update() { |
| double overPower; |
| float sensitivity = 1.7; |
| float angular_power; |
| float linear_power; |
| double wheel; |
| |
| double neg_inertia = wheel_ - _old_wheel; |
| _old_wheel = wheel_; |
| |
| double wheelNonLinearity; |
| if (highgear_) { |
| wheelNonLinearity = 0.1; // used to be csvReader->TURN_NONLIN_HIGH |
| // Apply a sin function that's scaled to make it feel better. |
| const double angular_range = M_PI / 2.0 * wheelNonLinearity; |
| wheel = sin(angular_range * wheel_) / sin(angular_range); |
| wheel = sin(angular_range * wheel) / sin(angular_range); |
| } else { |
| wheelNonLinearity = 0.2; // used to be csvReader->TURN_NONLIN_LOW |
| // Apply a sin function that's scaled to make it feel better. |
| const double angular_range = M_PI / 2.0 * wheelNonLinearity; |
| wheel = sin(angular_range * wheel_) / sin(angular_range); |
| wheel = sin(angular_range * wheel) / sin(angular_range); |
| wheel = sin(angular_range * wheel) / sin(angular_range); |
| } |
| |
| static const double kThrottleDeadband = 0.05; |
| if (::std::abs(throttle_) < kThrottleDeadband) { |
| throttle_ = 0; |
| } else { |
| throttle_ = copysign((::std::abs(throttle_) - kThrottleDeadband) / |
| (1.0 - kThrottleDeadband), throttle_); |
| } |
| |
| double neg_inertia_scalar; |
| if (highgear_) { |
| neg_inertia_scalar = 8.0; // used to be csvReader->NEG_INTERTIA_HIGH |
| sensitivity = 1.22; // used to be csvReader->SENSE_HIGH |
| } else { |
| if (wheel * neg_inertia > 0) { |
| neg_inertia_scalar = 5; // used to be csvReader->NEG_INERTIA_LOW_MORE |
| } else { |
| if (::std::abs(wheel) > 0.65) { |
| neg_inertia_scalar = 5; // used to be csvReader->NEG_INTERTIA_LOW_LESS_EXT |
| } else { |
| neg_inertia_scalar = 5; // used to be csvReader->NEG_INTERTIA_LOW_LESS |
| } |
| } |
| sensitivity = 1.24; // used to be csvReader->SENSE_LOW |
| } |
| double neg_inertia_power = neg_inertia * neg_inertia_scalar; |
| _neg_inertia_accumulator += neg_inertia_power; |
| |
| wheel = wheel + _neg_inertia_accumulator; |
| if (_neg_inertia_accumulator > 1) { |
| _neg_inertia_accumulator -= 1; |
| } else if (_neg_inertia_accumulator < -1) { |
| _neg_inertia_accumulator += 1; |
| } else { |
| _neg_inertia_accumulator = 0; |
| } |
| |
| linear_power = throttle_; |
| |
| if (quickturn_) { |
| double qt_angular_power = wheel; |
| if (::std::abs(linear_power) < 0.2) { |
| if (qt_angular_power > 1) qt_angular_power = 1.0; |
| if (qt_angular_power < -1) qt_angular_power = -1.0; |
| } else { |
| qt_angular_power = 0.0; |
| } |
| overPower = 1.0; |
| if (highgear_) { |
| sensitivity = 1.0; |
| } else { |
| sensitivity = 1.0; |
| } |
| angular_power = wheel; |
| } else { |
| overPower = 0.0; |
| angular_power = ::std::abs(throttle_) * wheel * sensitivity; |
| } |
| |
| _right_pwm = _left_pwm = linear_power; |
| _left_pwm += angular_power; |
| _right_pwm -= angular_power; |
| |
| if (_left_pwm > 1.0) { |
| _right_pwm -= overPower*(_left_pwm - 1.0); |
| _left_pwm = 1.0; |
| } else if (_right_pwm > 1.0) { |
| _left_pwm -= overPower*(_right_pwm - 1.0); |
| _right_pwm = 1.0; |
| } else if (_left_pwm < -1.0) { |
| _right_pwm += overPower*(-1.0 - _left_pwm); |
| _left_pwm = -1.0; |
| } else if (_right_pwm < -1.0) { |
| _left_pwm += overPower*(-1.0 - _right_pwm); |
| _right_pwm = -1.0; |
| } |
| } |
| |
| void SendMotors(Drivetrain::Output *output) { |
| LOG(DEBUG, "left pwm: %f right pwm: %f wheel: %f throttle: %f\n", |
| _left_pwm, _right_pwm, wheel_, throttle_); |
| if (output) { |
| output->left_voltage = _left_pwm * 12.0; |
| output->right_voltage = _right_pwm * 12.0; |
| } |
| if (highgear_) { |
| shifters.MakeWithBuilder().set(false).Send(); |
| } else { |
| shifters.MakeWithBuilder().set(true).Send(); |
| } |
| } |
| |
| private: |
| double _old_wheel; |
| double wheel_; |
| double throttle_; |
| bool quickturn_; |
| bool highgear_; |
| double _neg_inertia_accumulator; |
| double _left_pwm; |
| double _right_pwm; |
| }; |
| |
| void DrivetrainLoop::RunIteration(const Drivetrain::Goal *goal, |
| const Drivetrain::Position *position, |
| Drivetrain::Output *output, |
| Drivetrain::Status * /*status*/) { |
| // TODO(aschuh): These should be members of the class. |
| static DrivetrainMotorsSS dt_closedloop; |
| static PolyDrivetrain dt_openloop; |
| |
| bool bad_pos = false; |
| if (position == nullptr) { |
| LOG(WARNING, "no position\n"); |
| bad_pos = true; |
| } |
| |
| double wheel = goal->steering; |
| double throttle = goal->throttle; |
| bool quickturn = goal->quickturn; |
| bool highgear = goal->highgear; |
| |
| bool control_loop_driving = goal->control_loop_driving; |
| double left_goal = goal->left_goal; |
| double right_goal = goal->right_goal; |
| |
| dt_closedloop.SetGoal(left_goal, goal->left_velocity_goal, right_goal, |
| goal->right_velocity_goal); |
| if (!bad_pos) { |
| const double left_encoder = position->left_encoder; |
| const double right_encoder = position->right_encoder; |
| if (gyro.FetchLatest()) { |
| dt_closedloop.SetPosition(left_encoder, right_encoder, gyro->angle, |
| control_loop_driving); |
| } else { |
| dt_closedloop.SetRawPosition(left_encoder, right_encoder); |
| } |
| } |
| dt_openloop.SetPosition(position); |
| dt_closedloop.Update(position, output == NULL); |
| dt_openloop.SetGoal(wheel, throttle, quickturn, highgear); |
| dt_openloop.Update(); |
| if (control_loop_driving) { |
| dt_closedloop.SendMotors(output); |
| } else { |
| dt_openloop.SendMotors(output); |
| } |
| } |
| |
| } // namespace control_loops |
| } // namespace frc971 |