Added control loops for all subsystems and made tests run.

Change-Id: I66542db4355a89f6d24c1ad4772004182197c863
diff --git a/frc971/control_loops/python/elevator.py b/frc971/control_loops/python/elevator.py
new file mode 100755
index 0000000..2b42945
--- /dev/null
+++ b/frc971/control_loops/python/elevator.py
@@ -0,0 +1,246 @@
+#!/usr/bin/python
+
+import control_loop
+import controls
+import polytope
+import polydrivetrain
+import numpy
+import sys
+import matplotlib
+from matplotlib import pylab
+
+class Elevator(control_loop.ControlLoop):
+  def __init__(self, name="Elevator", mass=None):
+    super(Elevator, self).__init__(name)
+    # Stall Torque in N m
+    self.stall_torque = 0.476
+    # Stall Current in Amps
+    self.stall_current = 80.730
+    # Free Speed in RPM
+    self.free_speed = 13906.0
+    # Free Current in Amps
+    self.free_current = 5.820
+    # Mass of the elevator
+    if mass is None:
+      self.mass = 13.0
+    else:
+      self.mass = mass
+
+    # Resistance of the motor
+    self.R = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+               (12.0 - self.R * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratio
+    self.G = (56.0 / 12.0) * (84.0 / 14.0)
+    # Pulley diameter
+    self.r = 32 * 0.005 / numpy.pi / 2.0
+    # Control loop time step
+    self.dt = 0.005
+
+    # Elevator left/right spring constant (N/m)
+    self.spring = 3000.0
+
+    # State is [average position, average velocity,
+    #           position difference/2, velocity difference/2]
+    # Input is [V1, V2]
+
+    C1 = self.spring / (self.mass * 0.5)
+    C2 = self.Kt * self.G / (self.mass * 0.5 * self.r * self.R)
+    C3 = self.G * self.G * self.Kt / (
+        self.R  * self.r * self.r * self.mass * 0.5 * self.Kv)
+
+    self.A_continuous = numpy.matrix(
+        [[0, 1, 0, 0],
+         [0, -C3, 0, 0],
+         [0, 0, 0, 1],
+         [0, 0, -C1 * 2.0, -C3]])
+
+    print "Full speed is", C2 / C3 * 12.0
+
+    # Start with the unmodified input
+    self.B_continuous = numpy.matrix(
+        [[0, 0],
+         [C2 / 2.0, C2 / 2.0],
+         [0, 0],
+         [C2 / 2.0, -C2 / 2.0]])
+
+    self.C = numpy.matrix([[1, 0, 1, 0],
+                           [1, 0, -1, 0]])
+    self.D = numpy.matrix([[0, 0],
+                           [0, 0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(
+        self.A_continuous, self.B_continuous, self.dt)
+
+    print self.A
+
+    controlability = controls.ctrb(self.A, self.B);
+    print "Rank of augmented controlability matrix.", numpy.linalg.matrix_rank(
+        controlability)
+
+    q_pos = 0.02
+    q_vel = 0.400
+    q_pos_diff = 0.01
+    q_vel_diff = 0.45
+    self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
+                           [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
+                           [0.0, 0.0, (1.0 / (q_pos_diff ** 2.0)), 0.0],
+                           [0.0, 0.0, 0.0, (1.0 / (q_vel_diff ** 2.0))]])
+
+    self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
+                           [0.0, 1.0 / (12.0 ** 2.0)]])
+    self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
+    print self.K
+
+    print numpy.linalg.eig(self.A - self.B * self.K)[0]
+
+    self.rpl = 0.20
+    self.ipl = 0.05
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl,
+                             self.rpl - 1j * self.ipl])
+
+    # The box formed by U_min and U_max must encompass all possible values,
+    # or else Austin's code gets angry.
+    self.U_max = numpy.matrix([[12.0], [12.0]])
+    self.U_min = numpy.matrix([[-12.0], [-12.0]])
+
+    self.InitializeState()
+
+
+def CapU(U):
+  if U[0, 0] - U[1, 0] > 24:
+    return numpy.matrix([[12], [-12]])
+  elif U[0, 0] - U[1, 0] < -24:
+    return numpy.matrix([[-12], [12]])
+  else:
+    max_u = max(U[0, 0], U[1, 0])
+    min_u = min(U[0, 0], U[1, 0])
+    if max_u > 12:
+      return U - (max_u - 12)
+    if min_u < -12:
+      return U - (min_u + 12)
+    return U
+
+
+def run_test(elevator, initial_X, goal, max_separation_error=0.01,
+             show_graph=True, iterations=200, controller_elevator=None,
+             observer_elevator=None):
+  """Runs the elevator plant with an initial condition and goal.
+
+    The tests themselves are not terribly sophisticated; I just test for
+    whether the goal has been reached and whether the separation goes
+    outside of the initial and goal values by more than max_separation_error.
+    Prints out something for a failure of either condition and returns
+    False if tests fail.
+    Args:
+      elevator: elevator object to use.
+      initial_X: starting state.
+      goal: goal state.
+      show_graph: Whether or not to display a graph showing the changing
+           states and voltages.
+      iterations: Number of timesteps to run the model for.
+      controller_elevator: elevator object to get K from, or None if we should
+          use elevator.
+      observer_elevator: elevator object to use for the observer, or None if we
+          should use the actual state.
+  """
+
+  elevator.X = initial_X
+
+  if controller_elevator is None:
+    controller_elevator = elevator
+
+  if observer_elevator is not None:
+    observer_elevator.X_hat = initial_X + 0.01
+    observer_elevator.X_hat = initial_X
+
+  # Various lists for graphing things.
+  t = []
+  x_avg = []
+  x_sep = []
+  x_hat_avg = []
+  x_hat_sep = []
+  v_avg = []
+  v_sep = []
+  u_left = []
+  u_right = []
+
+  sep_plot_gain = 100.0
+
+  for i in xrange(iterations):
+    X_hat = elevator.X
+    if observer_elevator is not None:
+      X_hat = observer_elevator.X_hat
+      x_hat_avg.append(observer_elevator.X_hat[0, 0])
+      x_hat_sep.append(observer_elevator.X_hat[2, 0] * sep_plot_gain)
+    U = controller_elevator.K * (goal - X_hat)
+    U = CapU(U)
+    x_avg.append(elevator.X[0, 0])
+    v_avg.append(elevator.X[1, 0])
+    x_sep.append(elevator.X[2, 0] * sep_plot_gain)
+    v_sep.append(elevator.X[3, 0])
+    if observer_elevator is not None:
+      observer_elevator.PredictObserver(U)
+    elevator.Update(U)
+    if observer_elevator is not None:
+      observer_elevator.Y = elevator.Y
+      observer_elevator.CorrectObserver(U)
+
+    t.append(i * elevator.dt)
+    u_left.append(U[0, 0])
+    u_right.append(U[1, 0])
+
+  print numpy.linalg.inv(elevator.A)
+  print "delta time is ", elevator.dt
+  print "Velocity at t=0 is ", x_avg[0], v_avg[0], x_sep[0], v_sep[0]
+  print "Velocity at t=1+dt is ", x_avg[1], v_avg[1], x_sep[1], v_sep[1]
+
+  if show_graph:
+    pylab.subplot(2, 1, 1)
+    pylab.plot(t, x_avg, label='x avg')
+    pylab.plot(t, x_sep, label='x sep')
+    if observer_elevator is not None:
+      pylab.plot(t, x_hat_avg, label='x_hat avg')
+      pylab.plot(t, x_hat_sep, label='x_hat sep')
+    pylab.legend()
+
+    pylab.subplot(2, 1, 2)
+    pylab.plot(t, u_left, label='u left')
+    pylab.plot(t, u_right, label='u right')
+    pylab.legend()
+    pylab.show()
+
+
+def main(argv):
+  loaded_mass = 25
+  #loaded_mass = 0
+  elevator = Elevator(mass=13 + loaded_mass)
+  elevator_controller = Elevator(mass=13 + 15)
+  observer_elevator = Elevator(mass=13 + 15)
+  #observer_elevator = None
+
+  # Test moving the elevator with constant separation.
+  initial_X = numpy.matrix([[0.0], [0.0], [0.01], [0.0]])
+  #initial_X = numpy.matrix([[0.0], [0.0], [0.00], [0.0]])
+  R = numpy.matrix([[1.0], [0.0], [0.0], [0.0]])
+  run_test(elevator, initial_X, R, controller_elevator=elevator_controller,
+           observer_elevator=observer_elevator)
+
+  # Write the generated constants out to a file.
+  if len(argv) != 3:
+    print "Expected .h file name and .cc file name for the elevator."
+  else:
+    elevator = Elevator("Elevator")
+    loop_writer = control_loop.ControlLoopWriter("Elevator", [elevator])
+    if argv[1][-3:] == '.cc':
+      loop_writer.Write(argv[2], argv[1])
+    else:
+      loop_writer.Write(argv[1], argv[2])
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))