blob: dd2e67d1085ea879005bceae5c308d1f49b34a1f [file] [log] [blame]
#include "y2022/control_loops/localizer/localizer.h"
#include "frc971/control_loops/c2d.h"
#include "frc971/wpilib/imu_batch_generated.h"
// TODO(james): Things to do:
// -Approach still seems fundamentally sound.
// -Really need to work on cost/residual function.
// -Particularly for handling stopping.
// -Extra hysteresis
namespace frc971::controls {
namespace {
constexpr double kG = 9.80665;
constexpr std::chrono::microseconds kNominalDt(500);
template <int N>
Eigen::Matrix<double, N, 1> MakeState(std::vector<double> values) {
CHECK_EQ(static_cast<size_t>(N), values.size());
Eigen::Matrix<double, N, 1> vector;
for (int ii = 0; ii < N; ++ii) {
vector(ii, 0) = values[ii];
}
return vector;
}
#if 0
Eigen::Matrix<double, 3, 3> AxisToMatrix(const Eigen::Vector3d &vec) {
const double rotation_norm = vec.norm();
return rotation_norm < 1e-5
? Eigen::Matrix<double, 3, 3>::Identity()
: Eigen::AngleAxis<double>(rotation_norm, vec / rotation_norm)
.toRotationMatrix();
}
#endif
} // namespace
ModelBasedLocalizer::ModelBasedLocalizer(
const control_loops::drivetrain::DrivetrainConfig<double> &dt_config)
: dt_config_(dt_config),
velocity_drivetrain_coefficients_(
dt_config.make_hybrid_drivetrain_velocity_loop()
.plant()
.coefficients()),
down_estimator_(dt_config) {
if (dt_config_.is_simulated) {
down_estimator_.assume_perfect_gravity();
}
A_continuous_accel_.setZero();
A_continuous_model_.setZero();
B_continuous_accel_.setZero();
B_continuous_model_.setZero();
A_continuous_accel_(kX, kVelocityX) = 1.0;
A_continuous_accel_(kY, kVelocityY) = 1.0;
const double diameter = 2.0 * dt_config_.robot_radius;
A_continuous_model_(kTheta, kLeftVelocity) = -1.0 / diameter;
A_continuous_model_(kTheta, kRightVelocity) = 1.0 / diameter;
A_continuous_model_(kLeftEncoder, kLeftVelocity) = 1.0;
A_continuous_model_(kRightEncoder, kRightVelocity) = 1.0;
const auto &vel_coefs = velocity_drivetrain_coefficients_;
A_continuous_model_(kLeftVelocity, kLeftVelocity) =
vel_coefs.A_continuous(0, 0);
A_continuous_model_(kLeftVelocity, kRightVelocity) =
vel_coefs.A_continuous(0, 1);
A_continuous_model_(kRightVelocity, kLeftVelocity) =
vel_coefs.A_continuous(1, 0);
A_continuous_model_(kRightVelocity, kRightVelocity) =
vel_coefs.A_continuous(1, 1);
A_continuous_model_(kLeftVelocity, kLeftVoltageError) =
1 * vel_coefs.B_continuous(0, 0);
A_continuous_model_(kLeftVelocity, kRightVoltageError) =
1 * vel_coefs.B_continuous(0, 1);
A_continuous_model_(kRightVelocity, kLeftVoltageError) =
1 * vel_coefs.B_continuous(1, 0);
A_continuous_model_(kRightVelocity, kRightVoltageError) =
1 * vel_coefs.B_continuous(1, 1);
B_continuous_model_.block<1, 2>(kLeftVelocity, kLeftVoltage) =
vel_coefs.B_continuous.row(0);
B_continuous_model_.block<1, 2>(kRightVelocity, kLeftVoltage) =
vel_coefs.B_continuous.row(1);
B_continuous_accel_(kVelocityX, kAccelX) = 1.0;
B_continuous_accel_(kVelocityY, kAccelY) = 1.0;
B_continuous_accel_(kTheta, kThetaRate) = 1.0;
Q_continuous_model_.setZero();
Q_continuous_model_.diagonal() << 1e-4, 1e-4, 1e-4, 1e-2, 1e-0, 1e-0, 1e-2,
1e-0, 1e-0;
P_model_ = Q_continuous_model_ * aos::time::DurationInSeconds(kNominalDt);
}
Eigen::Matrix<double, ModelBasedLocalizer::kNModelStates,
ModelBasedLocalizer::kNModelStates>
ModelBasedLocalizer::AModel(
const ModelBasedLocalizer::ModelState &state) const {
Eigen::Matrix<double, kNModelStates, kNModelStates> A = A_continuous_model_;
const double theta = state(kTheta);
const double stheta = std::sin(theta);
const double ctheta = std::cos(theta);
const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
A(kX, kTheta) = -stheta * velocity;
A(kX, kLeftVelocity) = ctheta / 2.0;
A(kX, kRightVelocity) = ctheta / 2.0;
A(kY, kTheta) = ctheta * velocity;
A(kY, kLeftVelocity) = stheta / 2.0;
A(kY, kRightVelocity) = stheta / 2.0;
return A;
}
Eigen::Matrix<double, ModelBasedLocalizer::kNAccelStates,
ModelBasedLocalizer::kNAccelStates>
ModelBasedLocalizer::AAccel() const {
return A_continuous_accel_;
}
ModelBasedLocalizer::ModelState ModelBasedLocalizer::DiffModel(
const ModelBasedLocalizer::ModelState &state,
const ModelBasedLocalizer::ModelInput &U) const {
ModelState x_dot = AModel(state) * state + B_continuous_model_ * U;
const double theta = state(kTheta);
const double stheta = std::sin(theta);
const double ctheta = std::cos(theta);
const double velocity = (state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
x_dot(kX) = ctheta * velocity;
x_dot(kY) = stheta * velocity;
return x_dot;
}
ModelBasedLocalizer::AccelState ModelBasedLocalizer::DiffAccel(
const ModelBasedLocalizer::AccelState &state,
const ModelBasedLocalizer::AccelInput &U) const {
return AAccel() * state + B_continuous_accel_ * U;
}
ModelBasedLocalizer::ModelState ModelBasedLocalizer::UpdateModel(
const ModelBasedLocalizer::ModelState &model,
const ModelBasedLocalizer::ModelInput &input,
const aos::monotonic_clock::duration dt) const {
return control_loops::RungeKutta(
std::bind(&ModelBasedLocalizer::DiffModel, this, std::placeholders::_1,
input),
model, aos::time::DurationInSeconds(dt));
}
ModelBasedLocalizer::AccelState ModelBasedLocalizer::UpdateAccel(
const ModelBasedLocalizer::AccelState &accel,
const ModelBasedLocalizer::AccelInput &input,
const aos::monotonic_clock::duration dt) const {
return control_loops::RungeKutta(
std::bind(&ModelBasedLocalizer::DiffAccel, this, std::placeholders::_1,
input),
accel, aos::time::DurationInSeconds(dt));
}
ModelBasedLocalizer::AccelState ModelBasedLocalizer::AccelStateForModelState(
const ModelBasedLocalizer::ModelState &state) const {
const double robot_speed =
(state(kLeftVelocity) + state(kRightVelocity)) / 2.0;
const double velocity_x = std::cos(state(kTheta)) * robot_speed;
const double velocity_y = std::sin(state(kTheta)) * robot_speed;
return (AccelState() << state(0), state(1), state(2), velocity_x, velocity_y)
.finished();
}
ModelBasedLocalizer::ModelState ModelBasedLocalizer::ModelStateForAccelState(
const ModelBasedLocalizer::AccelState &state,
const Eigen::Vector2d &encoders, const double yaw_rate) const {
const double robot_speed = state(kVelocityX) * std::cos(state(kTheta)) +
state(kVelocityY) * std::sin(state(kTheta));
const double radius = dt_config_.robot_radius;
const double left_velocity = robot_speed - yaw_rate * radius;
const double right_velocity = robot_speed + yaw_rate * radius;
return (ModelState() << state(0), state(1), state(2), encoders(0),
left_velocity, 0.0, encoders(1), right_velocity, 0.0)
.finished();
}
double ModelBasedLocalizer::ModelDivergence(
const ModelBasedLocalizer::CombinedState &state,
const ModelBasedLocalizer::AccelInput &accel_inputs,
const Eigen::Vector2d &filtered_accel,
const ModelBasedLocalizer::ModelInput &model_inputs) {
// Convert the model state into the acceleration-based state-space and check
// the distance between the two (should really be a weighted norm, but all the
// numbers are on ~the same scale).
VLOG(2) << "divergence: "
<< (state.accel_state - AccelStateForModelState(state.model_state))
.transpose();
const AccelState diff_accel = DiffAccel(state.accel_state, accel_inputs);
const ModelState diff_model = DiffModel(state.model_state, model_inputs);
const double model_lng_velocity =
(state.model_state(kLeftVelocity) + state.model_state(kRightVelocity)) /
2.0;
const double model_lng_accel =
(diff_model(kLeftVelocity) + diff_model(kRightVelocity)) / 2.0;
const Eigen::Vector2d robot_frame_accel(
model_lng_accel, diff_model(kTheta) * model_lng_velocity);
const Eigen::Vector2d model_accel =
Eigen::AngleAxisd(state.model_state(kTheta), Eigen::Vector3d::UnitZ())
.toRotationMatrix()
.block<2, 2>(0, 0) *
robot_frame_accel;
const double accel_diff = (model_accel - filtered_accel).norm();
const double theta_rate_diff =
std::abs(diff_accel(kTheta) - diff_model(kTheta));
const Eigen::Vector2d accel_vel = state.accel_state.bottomRows<2>();
const Eigen::Vector2d model_vel =
AccelStateForModelState(state.model_state).bottomRows<2>();
velocity_residual_ = (accel_vel - model_vel).norm() /
(1.0 + accel_vel.norm() + model_vel.norm());
theta_rate_residual_ = theta_rate_diff;
accel_residual_ = accel_diff / 4.0;
return velocity_residual_ + theta_rate_residual_ + accel_residual_;
}
void ModelBasedLocalizer::HandleImu(aos::monotonic_clock::time_point t,
const Eigen::Vector3d &gyro,
const Eigen::Vector3d &accel,
const Eigen::Vector2d encoders,
const Eigen::Vector2d voltage) {
VLOG(2) << t;
if (t_ == aos::monotonic_clock::min_time) {
t_ = t;
}
if (t_ + 2 * kNominalDt < t) {
t_ = t;
++clock_resets_;
}
const aos::monotonic_clock::duration dt = t - t_;
t_ = t;
down_estimator_.Predict(gyro, accel, dt);
// TODO(james): Should we prefer this or use the down-estimator corrected
// version?
const double yaw_rate = (dt_config_.imu_transform * gyro)(2);
const double diameter = 2.0 * dt_config_.robot_radius;
const Eigen::AngleAxis<double> orientation(
Eigen::AngleAxis<double>(xytheta()(kTheta), Eigen::Vector3d::UnitZ()) *
down_estimator_.X_hat());
const Eigen::Vector3d absolute_accel =
orientation * dt_config_.imu_transform * kG * accel;
abs_accel_ = absolute_accel;
const Eigen::Vector3d absolute_gyro =
orientation * dt_config_.imu_transform * gyro;
(void)absolute_gyro;
VLOG(2) << "abs accel " << absolute_accel.transpose();
VLOG(2) << "abs gyro " << absolute_gyro.transpose();
VLOG(2) << "dt " << aos::time::DurationInSeconds(dt);
// Update all the branched states.
const AccelInput accel_input(absolute_accel.x(), absolute_accel.y(),
yaw_rate);
const ModelInput model_input(voltage);
const Eigen::Matrix<double, kNModelStates, kNModelStates> A_continuous =
AModel(current_state_.model_state);
Eigen::Matrix<double, kNModelStates, kNModelStates> A_discrete;
Eigen::Matrix<double, kNModelStates, kNModelStates> Q_discrete;
DiscretizeQAFast(Q_continuous_model_, A_continuous, dt, &Q_discrete,
&A_discrete);
P_model_ = A_discrete * P_model_ * A_discrete.transpose() + Q_discrete;
Eigen::Matrix<double, kNModelOutputs, kNModelStates> H;
Eigen::Matrix<double, kNModelOutputs, kNModelOutputs> R;
{
H.setZero();
R.setZero();
H(0, kLeftEncoder) = 1.0;
H(1, kRightEncoder) = 1.0;
H(2, kRightVelocity) = 1.0 / diameter;
H(2, kLeftVelocity) = -1.0 / diameter;
R.diagonal() << 1e-9, 1e-9, 1e-13;
}
const Eigen::Matrix<double, kNModelOutputs, 1> Z(encoders(0), encoders(1),
yaw_rate);
if (branches_.empty()) {
VLOG(2) << "Initializing";
current_state_.model_state.setZero();
current_state_.accel_state.setZero();
current_state_.model_state(kLeftEncoder) = encoders(0);
current_state_.model_state(kRightEncoder) = encoders(1);
current_state_.branch_time = t;
branches_.Push(current_state_);
}
const Eigen::Matrix<double, kNModelStates, kNModelOutputs> K =
P_model_ * H.transpose() * (H * P_model_ * H.transpose() + R).inverse();
P_model_ = (Eigen::Matrix<double, kNModelStates, kNModelStates>::Identity() -
K * H) *
P_model_;
VLOG(2) << "K\n" << K;
VLOG(2) << "Z\n" << Z.transpose();
for (CombinedState &state : branches_) {
state.accel_state = UpdateAccel(state.accel_state, accel_input, dt);
if (down_estimator_.consecutive_still() > 100.0) {
state.accel_state(kVelocityX) *= 0.9;
state.accel_state(kVelocityY) *= 0.9;
}
state.model_state = UpdateModel(state.model_state, model_input, dt);
state.model_state += K * (Z - H * state.model_state);
}
VLOG(2) << "oildest accel " << branches_[0].accel_state.transpose();
VLOG(2) << "oildest accel diff "
<< DiffAccel(branches_[0].accel_state, accel_input).transpose();
VLOG(2) << "oildest model " << branches_[0].model_state.transpose();
// Determine whether to switch modes--if we are currently in model-based mode,
// swap to accel-based if the two states have divergeed meaningfully in the
// oldest branch. If we are currently in accel-based, then swap back to model
// if the oldest model branch matches has matched the
filtered_residual_accel_ +=
0.01 * (accel_input.topRows<2>() - filtered_residual_accel_);
const double model_divergence =
branches_.full() ? ModelDivergence(branches_[0], accel_input,
filtered_residual_accel_, model_input)
: 0.0;
filtered_residual_ +=
(1.0 - std::exp(-aos::time::DurationInSeconds(kNominalDt) / 0.0095)) *
(model_divergence - filtered_residual_);
constexpr double kUseAccelThreshold = 0.4;
constexpr double kUseModelThreshold = 0.2;
constexpr size_t kShareStates = kNModelStates;
static_assert(kUseModelThreshold < kUseAccelThreshold);
if (using_model_) {
if (filtered_residual_ > kUseAccelThreshold) {
hysteresis_count_++;
} else {
hysteresis_count_ = 0;
}
if (hysteresis_count_ > 0) {
using_model_ = false;
// Grab the accel-based state from back when we started diverging.
// TODO(james): This creates a problematic selection bias, because
// we will tend to bias towards deliberately out-of-tune measurements.
current_state_.accel_state = branches_[0].accel_state;
current_state_.model_state = branches_[0].model_state;
current_state_.model_state = ModelStateForAccelState(
current_state_.accel_state, encoders, yaw_rate);
} else {
VLOG(2) << "Normal branching";
current_state_.model_state = branches_[branches_.size() - 1].model_state;
current_state_.accel_state =
AccelStateForModelState(current_state_.model_state);
current_state_.branch_time = t;
}
hysteresis_count_ = 0;
} else {
if (filtered_residual_ < kUseModelThreshold) {
hysteresis_count_++;
} else {
hysteresis_count_ = 0;
}
if (hysteresis_count_ > 100) {
using_model_ = true;
// Grab the model-based state from back when we stopped diverging.
current_state_.model_state.topRows<kShareStates>() =
ModelStateForAccelState(branches_[0].accel_state, encoders, yaw_rate)
.topRows<kShareStates>();
current_state_.accel_state =
AccelStateForModelState(current_state_.model_state);
} else {
current_state_.accel_state = branches_[branches_.size() - 1].accel_state;
// TODO(james): Why was I leaving the encoders/wheel velocities in place?
current_state_.model_state = branches_[branches_.size() - 1].model_state;
current_state_.model_state = ModelStateForAccelState(
current_state_.accel_state, encoders, yaw_rate);
current_state_.branch_time = t;
}
}
// Generate a new branch, with the accel state reset based on the model-based
// state (really, just getting rid of the lateral velocity).
CombinedState new_branch = current_state_;
//if (!keep_accel_state) {
if (using_model_) {
new_branch.accel_state = AccelStateForModelState(new_branch.model_state);
}
new_branch.accumulated_divergence = 0.0;
branches_.Push(new_branch);
last_residual_ = model_divergence;
VLOG(2) << "Using " << (using_model_ ? "model" : "accel");
VLOG(2) << "Residual " << last_residual_;
VLOG(2) << "Filtered Residual " << filtered_residual_;
VLOG(2) << "buffer size " << branches_.size();
VLOG(2) << "Model state " << current_state_.model_state.transpose();
VLOG(2) << "Accel state " << current_state_.accel_state.transpose();
VLOG(2) << "Accel state for model "
<< AccelStateForModelState(current_state_.model_state).transpose();
VLOG(2) << "Input acce " << accel.transpose();
VLOG(2) << "Input gyro " << gyro.transpose();
VLOG(2) << "Input voltage " << voltage.transpose();
VLOG(2) << "Input encoder " << encoders.transpose();
VLOG(2) << "yaw rate " << yaw_rate;
CHECK(std::isfinite(last_residual_));
}
void ModelBasedLocalizer::HandleReset(aos::monotonic_clock::time_point now,
const Eigen::Vector3d &xytheta) {
branches_.Reset();
t_ = now;
using_model_ = true;
current_state_.model_state << xytheta(0), xytheta(1), xytheta(2),
current_state_.model_state(kLeftEncoder), 0.0, 0.0,
current_state_.model_state(kRightEncoder), 0.0, 0.0;
current_state_.accel_state =
AccelStateForModelState(current_state_.model_state);
last_residual_ = 0.0;
filtered_residual_ = 0.0;
filtered_residual_accel_.setZero();
abs_accel_.setZero();
}
flatbuffers::Offset<AccelBasedState> ModelBasedLocalizer::BuildAccelState(
flatbuffers::FlatBufferBuilder *fbb, const AccelState &state) {
AccelBasedState::Builder accel_state_builder(*fbb);
accel_state_builder.add_x(state(kX));
accel_state_builder.add_y(state(kY));
accel_state_builder.add_theta(state(kTheta));
accel_state_builder.add_velocity_x(state(kVelocityX));
accel_state_builder.add_velocity_y(state(kVelocityY));
return accel_state_builder.Finish();
}
flatbuffers::Offset<ModelBasedState> ModelBasedLocalizer::BuildModelState(
flatbuffers::FlatBufferBuilder *fbb, const ModelState &state) {
ModelBasedState::Builder model_state_builder(*fbb);
model_state_builder.add_x(state(kX));
model_state_builder.add_y(state(kY));
model_state_builder.add_theta(state(kTheta));
model_state_builder.add_left_encoder(state(kLeftEncoder));
model_state_builder.add_left_velocity(state(kLeftVelocity));
model_state_builder.add_left_voltage_error(state(kLeftVoltageError));
model_state_builder.add_right_encoder(state(kRightEncoder));
model_state_builder.add_right_velocity(state(kRightVelocity));
model_state_builder.add_right_voltage_error(state(kRightVoltageError));
return model_state_builder.Finish();
}
flatbuffers::Offset<ModelBasedStatus> ModelBasedLocalizer::PopulateStatus(
flatbuffers::FlatBufferBuilder *fbb) {
const flatbuffers::Offset<control_loops::drivetrain::DownEstimatorState>
down_estimator_offset = down_estimator_.PopulateStatus(fbb, t_);
const CombinedState &state = current_state_;
const flatbuffers::Offset<ModelBasedState> model_state_offset =
BuildModelState(fbb, state.model_state);
const flatbuffers::Offset<AccelBasedState> accel_state_offset =
BuildAccelState(fbb, state.accel_state);
const flatbuffers::Offset<AccelBasedState> oldest_accel_state_offset =
branches_.empty() ? flatbuffers::Offset<AccelBasedState>()
: BuildAccelState(fbb, branches_[0].accel_state);
const flatbuffers::Offset<ModelBasedState> oldest_model_state_offset =
branches_.empty() ? flatbuffers::Offset<ModelBasedState>()
: BuildModelState(fbb, branches_[0].model_state);
ModelBasedStatus::Builder builder(*fbb);
builder.add_accel_state(accel_state_offset);
builder.add_oldest_accel_state(oldest_accel_state_offset);
builder.add_oldest_model_state(oldest_model_state_offset);
builder.add_model_state(model_state_offset);
builder.add_using_model(using_model_);
builder.add_residual(last_residual_);
builder.add_filtered_residual(filtered_residual_);
builder.add_velocity_residual(velocity_residual_);
builder.add_accel_residual(accel_residual_);
builder.add_theta_rate_residual(theta_rate_residual_);
builder.add_down_estimator(down_estimator_offset);
builder.add_x(xytheta()(0));
builder.add_y(xytheta()(1));
builder.add_theta(xytheta()(2));
builder.add_implied_accel_x(abs_accel_(0));
builder.add_implied_accel_y(abs_accel_(1));
builder.add_implied_accel_z(abs_accel_(2));
builder.add_clock_resets(clock_resets_);
return builder.Finish();
}
EventLoopLocalizer::EventLoopLocalizer(
aos::EventLoop *event_loop,
const control_loops::drivetrain::DrivetrainConfig<double> &dt_config)
: event_loop_(event_loop),
model_based_(dt_config),
status_sender_(event_loop_->MakeSender<LocalizerStatus>("/localizer")),
output_sender_(event_loop_->MakeSender<LocalizerOutput>("/localizer")),
output_fetcher_(
event_loop_->MakeFetcher<frc971::control_loops::drivetrain::Output>(
"/drivetrain")) {
event_loop_->MakeWatcher(
"/drivetrain",
[this](
const frc971::control_loops::drivetrain::LocalizerControl &control) {
const double theta = control.keep_current_theta()
? model_based_.xytheta()(2)
: control.theta();
model_based_.HandleReset(event_loop_->monotonic_now(),
{control.x(), control.y(), theta});
});
event_loop_->MakeWatcher(
"/localizer", [this](const frc971::IMUValuesBatch &values) {
CHECK(values.has_readings());
output_fetcher_.Fetch();
for (const IMUValues *value : *values.readings()) {
zeroer_.InsertAndProcessMeasurement(*value);
if (zeroer_.Zeroed()) {
if (output_fetcher_.get() != nullptr) {
const bool disabled =
output_fetcher_.context().monotonic_event_time +
std::chrono::milliseconds(10) <
event_loop_->context().monotonic_event_time;
model_based_.HandleImu(
aos::monotonic_clock::time_point(std::chrono::nanoseconds(
value->monotonic_timestamp_ns())),
zeroer_.ZeroedGyro(), zeroer_.ZeroedAccel(),
{value->left_encoder(), value->right_encoder()},
disabled ? Eigen::Vector2d::Zero()
: Eigen::Vector2d{output_fetcher_->left_voltage(),
output_fetcher_->right_voltage()});
}
}
{
auto builder = status_sender_.MakeBuilder();
const flatbuffers::Offset<ModelBasedStatus> model_based_status =
model_based_.PopulateStatus(builder.fbb());
LocalizerStatus::Builder status_builder =
builder.MakeBuilder<LocalizerStatus>();
status_builder.add_model_based(model_based_status);
status_builder.add_zeroed(zeroer_.Zeroed());
status_builder.add_faulted_zero(zeroer_.Faulted());
builder.CheckOk(builder.Send(status_builder.Finish()));
}
if (last_output_send_ + std::chrono::milliseconds(5) <
event_loop_->context().monotonic_event_time) {
auto builder = output_sender_.MakeBuilder();
LocalizerOutput::Builder output_builder =
builder.MakeBuilder<LocalizerOutput>();
// TODO(james): Should we bother to try to estimate time offsets for
// the pico?
output_builder.add_monotonic_timestamp_ns(
value->monotonic_timestamp_ns());
output_builder.add_x(model_based_.xytheta()(0));
output_builder.add_y(model_based_.xytheta()(1));
output_builder.add_theta(model_based_.xytheta()(2));
builder.CheckOk(builder.Send(output_builder.Finish()));
last_output_send_ = event_loop_->monotonic_now();
}
}
});
}
} // namespace frc971::controls