blob: ef3483978d31d4ce12ea4387631a82ef63b5b6e7 [file] [log] [blame]
#include "aos/events/simulated_event_loop.h"
#include <algorithm>
#include <deque>
#include <string_view>
#include <vector>
#include "absl/container/btree_map.h"
#include "aos/events/aos_logging.h"
#include "aos/events/simulated_network_bridge.h"
#include "aos/init.h"
#include "aos/json_to_flatbuffer.h"
#include "aos/realtime.h"
#include "aos/util/phased_loop.h"
namespace aos {
class SimulatedEventLoop;
class SimulatedFetcher;
class SimulatedChannel;
namespace {
class ScopedMarkRealtimeRestorer {
public:
ScopedMarkRealtimeRestorer(bool rt) : rt_(rt), prior_(MarkRealtime(rt)) {}
~ScopedMarkRealtimeRestorer() { CHECK_EQ(rt_, MarkRealtime(prior_)); }
private:
const bool rt_;
const bool prior_;
};
// Container for both a message, and the context for it for simulation. This
// makes tracking the timestamps associated with the data easy.
struct SimulatedMessage final {
SimulatedMessage(const SimulatedMessage &) = delete;
SimulatedMessage &operator=(const SimulatedMessage &) = delete;
// Creates a SimulatedMessage with size bytes of storage.
// This is a shared_ptr so we don't have to implement refcounting or copying.
static std::shared_ptr<SimulatedMessage> Make(SimulatedChannel *channel);
// Context for the data.
Context context;
SimulatedChannel *const channel = nullptr;
// The data.
char *data(size_t buffer_size) {
return RoundChannelData(&actual_data[0], buffer_size);
}
// Then the data, including padding on the end so we can align the buffer we
// actually return from data().
char actual_data[];
private:
SimulatedMessage(SimulatedChannel *channel_in);
~SimulatedMessage();
static void DestroyAndFree(SimulatedMessage *p) {
p->~SimulatedMessage();
free(p);
}
};
} // namespace
// TODO(Brian): This should be in the anonymous namespace, but that annoys GCC
// for some reason...
class SimulatedWatcher : public WatcherState {
public:
SimulatedWatcher(
SimulatedEventLoop *simulated_event_loop, EventScheduler *scheduler,
const Channel *channel,
std::function<void(const Context &context, const void *message)> fn);
~SimulatedWatcher() override;
bool has_run() const;
void Startup(EventLoop * /*event_loop*/) override {}
void Schedule(std::shared_ptr<SimulatedMessage> message);
void HandleEvent();
void SetSimulatedChannel(SimulatedChannel *channel) {
simulated_channel_ = channel;
}
private:
void DoSchedule(monotonic_clock::time_point event_time);
::std::deque<std::shared_ptr<SimulatedMessage>> msgs_;
SimulatedEventLoop *const simulated_event_loop_;
const Channel *const channel_;
EventScheduler *const scheduler_;
EventHandler<SimulatedWatcher> event_;
EventScheduler::Token token_;
SimulatedChannel *simulated_channel_ = nullptr;
};
class SimulatedChannel {
public:
explicit SimulatedChannel(const Channel *channel,
std::chrono::nanoseconds channel_storage_duration)
: channel_(channel),
channel_storage_duration_(channel_storage_duration),
next_queue_index_(ipc_lib::QueueIndex::Zero(number_buffers())) {
available_buffer_indices_.reserve(number_buffers());
for (int i = 0; i < number_buffers(); ++i) {
available_buffer_indices_.push_back(i);
}
}
~SimulatedChannel() {
latest_message_.reset();
CHECK_EQ(static_cast<size_t>(number_buffers()),
available_buffer_indices_.size());
CHECK_EQ(0u, fetchers_.size())
<< configuration::StrippedChannelToString(channel());
CHECK_EQ(0u, watchers_.size())
<< configuration::StrippedChannelToString(channel());
CHECK_EQ(0, sender_count_)
<< configuration::StrippedChannelToString(channel());
}
// The number of messages we pretend to have in the queue.
int queue_size() const {
return channel()->frequency() *
std::chrono::duration_cast<std::chrono::duration<double>>(
channel_storage_duration_)
.count();
}
// The number of extra buffers (beyond the queue) we pretend to have.
int number_scratch_buffers() const {
// We need to start creating messages before we know how many
// senders+readers we'll have, so we need to just pick something which is
// always big enough.
return 50;
}
int number_buffers() const { return queue_size() + number_scratch_buffers(); }
int GetBufferIndex() {
CHECK(!available_buffer_indices_.empty()) << ": This should be impossible";
const int result = available_buffer_indices_.back();
available_buffer_indices_.pop_back();
return result;
}
void FreeBufferIndex(int i) {
// This extra checking has a large performance hit with sanitizers that
// track memory accesses, so just skip it.
#if !__has_feature(memory_sanitizer) && !__has_feature(address_sanitizer)
DCHECK(std::find(available_buffer_indices_.begin(),
available_buffer_indices_.end(),
i) == available_buffer_indices_.end())
<< ": Buffer is not in use: " << i;
#endif
available_buffer_indices_.push_back(i);
}
// Makes a connected raw sender which calls Send below.
::std::unique_ptr<RawSender> MakeRawSender(SimulatedEventLoop *event_loop);
// Makes a connected raw fetcher.
::std::unique_ptr<RawFetcher> MakeRawFetcher(EventLoop *event_loop);
// Registers a watcher for the queue.
void MakeRawWatcher(SimulatedWatcher *watcher);
void RemoveWatcher(SimulatedWatcher *watcher) {
watchers_.erase(std::find(watchers_.begin(), watchers_.end(), watcher));
}
// Sends the message to all the connected receivers and fetchers. Returns the
// sent queue index.
uint32_t Send(std::shared_ptr<SimulatedMessage> message);
// Unregisters a fetcher.
void UnregisterFetcher(SimulatedFetcher *fetcher);
std::shared_ptr<SimulatedMessage> latest_message() { return latest_message_; }
size_t max_size() const { return channel()->max_size(); }
const std::string_view name() const {
return channel()->name()->string_view();
}
const Channel *channel() const { return channel_; }
void CountSenderCreated() {
CheckBufferCount();
if (sender_count_ >= channel()->num_senders()) {
LOG(FATAL) << "Failed to create sender on "
<< configuration::CleanedChannelToString(channel())
<< ", too many senders.";
}
++sender_count_;
}
void CountSenderDestroyed() {
--sender_count_;
CHECK_GE(sender_count_, 0);
}
private:
void CheckBufferCount() {
int reader_count = 0;
if (channel()->read_method() == ReadMethod::PIN) {
reader_count = watchers_.size() + fetchers_.size();
}
CHECK_LT(reader_count + sender_count_, number_scratch_buffers());
}
void CheckReaderCount() {
if (channel()->read_method() != ReadMethod::PIN) {
return;
}
CheckBufferCount();
const int reader_count = watchers_.size() + fetchers_.size();
if (reader_count >= channel()->num_readers()) {
LOG(FATAL) << "Failed to create reader on "
<< configuration::CleanedChannelToString(channel())
<< ", too many readers.";
}
}
const Channel *const channel_;
const std::chrono::nanoseconds channel_storage_duration_;
// List of all watchers.
::std::vector<SimulatedWatcher *> watchers_;
// List of all fetchers.
::std::vector<SimulatedFetcher *> fetchers_;
std::shared_ptr<SimulatedMessage> latest_message_;
ipc_lib::QueueIndex next_queue_index_;
int sender_count_ = 0;
std::vector<uint16_t> available_buffer_indices_;
};
namespace {
std::shared_ptr<SimulatedMessage> SimulatedMessage::Make(
SimulatedChannel *channel) {
// The allocations in here are due to infrastructure and don't count in the no
// mallocs in RT code.
ScopedNotRealtime nrt;
const size_t size = channel->max_size();
SimulatedMessage *const message = reinterpret_cast<SimulatedMessage *>(
malloc(sizeof(SimulatedMessage) + size + kChannelDataAlignment - 1));
new (message) SimulatedMessage(channel);
message->context.size = size;
message->context.data = message->data(size);
return std::shared_ptr<SimulatedMessage>(message,
&SimulatedMessage::DestroyAndFree);
}
SimulatedMessage::SimulatedMessage(SimulatedChannel *channel_in)
: channel(channel_in) {
context.buffer_index = channel->GetBufferIndex();
}
SimulatedMessage::~SimulatedMessage() {
channel->FreeBufferIndex(context.buffer_index);
}
class SimulatedSender : public RawSender {
public:
SimulatedSender(SimulatedChannel *simulated_channel,
SimulatedEventLoop *event_loop);
~SimulatedSender() override;
void *data() override {
if (!message_) {
message_ = SimulatedMessage::Make(simulated_channel_);
}
return message_->data(simulated_channel_->max_size());
}
size_t size() override { return simulated_channel_->max_size(); }
bool DoSend(size_t length,
aos::monotonic_clock::time_point monotonic_remote_time,
aos::realtime_clock::time_point realtime_remote_time,
uint32_t remote_queue_index,
const UUID &remote_boot_uuid) override;
bool DoSend(const void *msg, size_t size,
aos::monotonic_clock::time_point monotonic_remote_time,
aos::realtime_clock::time_point realtime_remote_time,
uint32_t remote_queue_index,
const UUID &remote_boot_uuid) override;
int buffer_index() override {
// First, ensure message_ is allocated.
data();
return message_->context.buffer_index;
}
private:
SimulatedChannel *simulated_channel_;
SimulatedEventLoop *event_loop_;
std::shared_ptr<SimulatedMessage> message_;
};
} // namespace
class SimulatedFetcher : public RawFetcher {
public:
explicit SimulatedFetcher(EventLoop *event_loop,
SimulatedChannel *simulated_channel)
: RawFetcher(event_loop, simulated_channel->channel()),
simulated_channel_(simulated_channel) {}
~SimulatedFetcher() { simulated_channel_->UnregisterFetcher(this); }
std::pair<bool, monotonic_clock::time_point> DoFetchNext() override {
// The allocations in here are due to infrastructure and don't count in the
// no mallocs in RT code.
ScopedNotRealtime nrt;
if (msgs_.size() == 0) {
return std::make_pair(false, monotonic_clock::min_time);
}
CHECK(!fell_behind_) << ": Got behind on "
<< configuration::StrippedChannelToString(
simulated_channel_->channel());
SetMsg(msgs_.front());
msgs_.pop_front();
return std::make_pair(true, event_loop()->monotonic_now());
}
std::pair<bool, monotonic_clock::time_point> DoFetch() override {
// The allocations in here are due to infrastructure and don't count in the
// no mallocs in RT code.
ScopedNotRealtime nrt;
if (msgs_.size() == 0) {
// TODO(austin): Can we just do this logic unconditionally? It is a lot
// simpler. And call clear, obviously.
if (!msg_ && simulated_channel_->latest_message()) {
SetMsg(simulated_channel_->latest_message());
return std::make_pair(true, event_loop()->monotonic_now());
} else {
return std::make_pair(false, monotonic_clock::min_time);
}
}
// We've had a message enqueued, so we don't need to go looking for the
// latest message from before we started.
SetMsg(msgs_.back());
msgs_.clear();
fell_behind_ = false;
return std::make_pair(true, event_loop()->monotonic_now());
}
private:
friend class SimulatedChannel;
// Updates the state inside RawFetcher to point to the data in msg_.
void SetMsg(std::shared_ptr<SimulatedMessage> msg) {
msg_ = msg;
context_ = msg_->context;
if (channel()->read_method() != ReadMethod::PIN) {
context_.buffer_index = -1;
}
if (context_.remote_queue_index == 0xffffffffu) {
context_.remote_queue_index = context_.queue_index;
}
if (context_.monotonic_remote_time == aos::monotonic_clock::min_time) {
context_.monotonic_remote_time = context_.monotonic_event_time;
}
if (context_.realtime_remote_time == aos::realtime_clock::min_time) {
context_.realtime_remote_time = context_.realtime_event_time;
}
}
// Internal method for Simulation to add a message to the buffer.
void Enqueue(std::shared_ptr<SimulatedMessage> buffer) {
msgs_.emplace_back(buffer);
if (fell_behind_ ||
msgs_.size() > static_cast<size_t>(simulated_channel_->queue_size())) {
fell_behind_ = true;
// Might as well empty out all the intermediate messages now.
while (msgs_.size() > 1) {
msgs_.pop_front();
}
}
}
SimulatedChannel *simulated_channel_;
std::shared_ptr<SimulatedMessage> msg_;
// Messages queued up but not in use.
::std::deque<std::shared_ptr<SimulatedMessage>> msgs_;
// Whether we're currently "behind", which means a FetchNext call will fail.
bool fell_behind_ = false;
};
class SimulatedTimerHandler : public TimerHandler {
public:
explicit SimulatedTimerHandler(EventScheduler *scheduler,
SimulatedEventLoop *simulated_event_loop,
::std::function<void()> fn);
~SimulatedTimerHandler() { Disable(); }
void Setup(monotonic_clock::time_point base,
monotonic_clock::duration repeat_offset) override;
void HandleEvent();
void Disable() override;
private:
SimulatedEventLoop *simulated_event_loop_;
EventHandler<SimulatedTimerHandler> event_;
EventScheduler *scheduler_;
EventScheduler::Token token_;
monotonic_clock::time_point base_;
monotonic_clock::duration repeat_offset_;
};
class SimulatedPhasedLoopHandler : public PhasedLoopHandler {
public:
SimulatedPhasedLoopHandler(EventScheduler *scheduler,
SimulatedEventLoop *simulated_event_loop,
::std::function<void(int)> fn,
const monotonic_clock::duration interval,
const monotonic_clock::duration offset);
~SimulatedPhasedLoopHandler();
void HandleEvent();
void Schedule(monotonic_clock::time_point sleep_time) override;
private:
SimulatedEventLoop *simulated_event_loop_;
EventHandler<SimulatedPhasedLoopHandler> event_;
EventScheduler *scheduler_;
EventScheduler::Token token_;
};
class SimulatedEventLoop : public EventLoop {
public:
explicit SimulatedEventLoop(
EventScheduler *scheduler, NodeEventLoopFactory *node_event_loop_factory,
absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>>
*channels,
const Configuration *configuration,
std::vector<std::pair<EventLoop *, std::function<void(bool)>>>
*raw_event_loops,
const Node *node, pid_t tid)
: EventLoop(CHECK_NOTNULL(configuration)),
scheduler_(scheduler),
node_event_loop_factory_(node_event_loop_factory),
channels_(channels),
raw_event_loops_(raw_event_loops),
node_(node),
tid_(tid) {
raw_event_loops_->push_back(std::make_pair(this, [this](bool value) {
if (!has_setup_) {
Setup();
has_setup_ = true;
}
set_is_running(value);
has_run_ = true;
}));
}
~SimulatedEventLoop() override {
// Trigger any remaining senders or fetchers to be cleared before destroying
// the event loop so the book keeping matches.
timing_report_sender_.reset();
// Force everything with a registered fd with epoll to be destroyed now.
timers_.clear();
phased_loops_.clear();
watchers_.clear();
for (auto it = raw_event_loops_->begin(); it != raw_event_loops_->end();
++it) {
if (it->first == this) {
raw_event_loops_->erase(it);
break;
}
}
}
bool has_run() const { return has_run_; }
std::chrono::nanoseconds send_delay() const { return send_delay_; }
void set_send_delay(std::chrono::nanoseconds send_delay) {
send_delay_ = send_delay;
}
::aos::monotonic_clock::time_point monotonic_now() override {
return node_event_loop_factory_->monotonic_now();
}
::aos::realtime_clock::time_point realtime_now() override {
return node_event_loop_factory_->realtime_now();
}
::std::unique_ptr<RawSender> MakeRawSender(const Channel *channel) override;
::std::unique_ptr<RawFetcher> MakeRawFetcher(const Channel *channel) override;
void MakeRawWatcher(
const Channel *channel,
::std::function<void(const Context &context, const void *message)>
watcher) override;
TimerHandler *AddTimer(::std::function<void()> callback) override {
CHECK(!is_running());
return NewTimer(::std::unique_ptr<TimerHandler>(
new SimulatedTimerHandler(scheduler_, this, callback)));
}
PhasedLoopHandler *AddPhasedLoop(::std::function<void(int)> callback,
const monotonic_clock::duration interval,
const monotonic_clock::duration offset =
::std::chrono::seconds(0)) override {
return NewPhasedLoop(
::std::unique_ptr<PhasedLoopHandler>(new SimulatedPhasedLoopHandler(
scheduler_, this, callback, interval, offset)));
}
void OnRun(::std::function<void()> on_run) override {
CHECK(!is_running()) << ": Cannot register OnRun callback while running.";
scheduler_->ScheduleOnRun([this, on_run = std::move(on_run)]() {
ScopedMarkRealtimeRestorer rt(priority() > 0);
on_run();
});
}
const Node *node() const override { return node_; }
void set_name(const std::string_view name) override {
name_ = std::string(name);
}
const std::string_view name() const override { return name_; }
SimulatedChannel *GetSimulatedChannel(const Channel *channel);
void SetRuntimeRealtimePriority(int priority) override {
CHECK(!is_running()) << ": Cannot set realtime priority while running.";
priority_ = priority;
}
int priority() const override { return priority_; }
void SetRuntimeAffinity(const cpu_set_t & /*cpuset*/) override {
CHECK(!is_running()) << ": Cannot set affinity while running.";
}
void Setup() {
MaybeScheduleTimingReports();
if (!skip_logger_) {
log_sender_.Initialize(MakeSender<logging::LogMessageFbs>("/aos"));
log_impl_ = log_sender_.implementation();
}
}
int NumberBuffers(const Channel *channel) override;
const UUID &boot_uuid() const override {
return node_event_loop_factory_->boot_uuid();
}
private:
friend class SimulatedTimerHandler;
friend class SimulatedPhasedLoopHandler;
friend class SimulatedWatcher;
void HandleEvent() {
while (true) {
if (EventCount() == 0 || PeekEvent()->event_time() > monotonic_now()) {
break;
}
EventLoopEvent *event = PopEvent();
event->HandleEvent();
}
}
pid_t GetTid() override { return tid_; }
EventScheduler *scheduler_;
NodeEventLoopFactory *node_event_loop_factory_;
absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>> *channels_;
std::vector<std::pair<EventLoop *, std::function<void(bool)>>>
*raw_event_loops_;
::std::string name_;
int priority_ = 0;
bool has_setup_ = false;
std::chrono::nanoseconds send_delay_;
const Node *const node_;
const pid_t tid_;
AosLogToFbs log_sender_;
std::shared_ptr<logging::LogImplementation> log_impl_ = nullptr;
bool has_run_ = false;
};
void SimulatedEventLoopFactory::set_send_delay(
std::chrono::nanoseconds send_delay) {
send_delay_ = send_delay;
for (std::pair<EventLoop *, std::function<void(bool)>> &loop :
raw_event_loops_) {
reinterpret_cast<SimulatedEventLoop *>(loop.first)
->set_send_delay(send_delay_);
}
}
void SimulatedEventLoop::MakeRawWatcher(
const Channel *channel,
std::function<void(const Context &channel, const void *message)> watcher) {
TakeWatcher(channel);
std::unique_ptr<SimulatedWatcher> shm_watcher(
new SimulatedWatcher(this, scheduler_, channel, std::move(watcher)));
GetSimulatedChannel(channel)->MakeRawWatcher(shm_watcher.get());
NewWatcher(std::move(shm_watcher));
// Order of operations gets kinda wonky if we let people make watchers after
// running once. If someone has a valid use case, we can reconsider.
CHECK(!has_run()) << ": Can't add a watcher after running.";
}
std::unique_ptr<RawSender> SimulatedEventLoop::MakeRawSender(
const Channel *channel) {
TakeSender(channel);
return GetSimulatedChannel(channel)->MakeRawSender(this);
}
std::unique_ptr<RawFetcher> SimulatedEventLoop::MakeRawFetcher(
const Channel *channel) {
ChannelIndex(channel);
if (!configuration::ChannelIsReadableOnNode(channel, node())) {
LOG(FATAL) << "Channel { \"name\": \"" << channel->name()->string_view()
<< "\", \"type\": \"" << channel->type()->string_view()
<< "\" } is not able to be fetched on this node. Check your "
"configuration.";
}
return GetSimulatedChannel(channel)->MakeRawFetcher(this);
}
SimulatedChannel *SimulatedEventLoop::GetSimulatedChannel(
const Channel *channel) {
auto it = channels_->find(SimpleChannel(channel));
if (it == channels_->end()) {
it =
channels_
->emplace(
SimpleChannel(channel),
std::unique_ptr<SimulatedChannel>(new SimulatedChannel(
channel, std::chrono::nanoseconds(
configuration()->channel_storage_duration()))))
.first;
}
return it->second.get();
}
int SimulatedEventLoop::NumberBuffers(const Channel *channel) {
return GetSimulatedChannel(channel)->number_buffers();
}
SimulatedWatcher::SimulatedWatcher(
SimulatedEventLoop *simulated_event_loop, EventScheduler *scheduler,
const Channel *channel,
std::function<void(const Context &context, const void *message)> fn)
: WatcherState(simulated_event_loop, channel, std::move(fn)),
simulated_event_loop_(simulated_event_loop),
channel_(channel),
scheduler_(scheduler),
event_(this),
token_(scheduler_->InvalidToken()) {}
SimulatedWatcher::~SimulatedWatcher() {
simulated_event_loop_->RemoveEvent(&event_);
if (token_ != scheduler_->InvalidToken()) {
scheduler_->Deschedule(token_);
}
CHECK_NOTNULL(simulated_channel_)->RemoveWatcher(this);
}
bool SimulatedWatcher::has_run() const {
return simulated_event_loop_->has_run();
}
void SimulatedWatcher::Schedule(std::shared_ptr<SimulatedMessage> message) {
monotonic_clock::time_point event_time =
simulated_event_loop_->monotonic_now();
// Messages are queued in order. If we are the first, add ourselves.
// Otherwise, don't.
if (msgs_.size() == 0) {
event_.set_event_time(message->context.monotonic_event_time);
simulated_event_loop_->AddEvent(&event_);
DoSchedule(event_time);
}
msgs_.emplace_back(message);
}
void SimulatedWatcher::HandleEvent() {
VLOG(1) << "Watcher " << configuration::CleanedChannelToString(channel_);
CHECK_NE(msgs_.size(), 0u) << ": No events to handle.";
const monotonic_clock::time_point monotonic_now =
simulated_event_loop_->monotonic_now();
logging::ScopedLogRestorer prev_logger;
if (simulated_event_loop_->log_impl_) {
prev_logger.Swap(simulated_event_loop_->log_impl_);
}
Context context = msgs_.front()->context;
if (channel_->read_method() != ReadMethod::PIN) {
context.buffer_index = -1;
}
if (context.remote_queue_index == 0xffffffffu) {
context.remote_queue_index = context.queue_index;
}
if (context.monotonic_remote_time == aos::monotonic_clock::min_time) {
context.monotonic_remote_time = context.monotonic_event_time;
}
if (context.realtime_remote_time == aos::realtime_clock::min_time) {
context.realtime_remote_time = context.realtime_event_time;
}
{
ScopedMarkRealtimeRestorer rt(simulated_event_loop_->priority() > 0);
DoCallCallback([monotonic_now]() { return monotonic_now; }, context);
}
msgs_.pop_front();
if (token_ != scheduler_->InvalidToken()) {
scheduler_->Deschedule(token_);
token_ = scheduler_->InvalidToken();
}
if (msgs_.size() != 0) {
event_.set_event_time(msgs_.front()->context.monotonic_event_time);
simulated_event_loop_->AddEvent(&event_);
DoSchedule(event_.event_time());
}
}
void SimulatedWatcher::DoSchedule(monotonic_clock::time_point event_time) {
CHECK(token_ == scheduler_->InvalidToken())
<< ": May not schedule multiple times";
token_ = scheduler_->Schedule(
event_time + simulated_event_loop_->send_delay(), [this]() {
DCHECK(token_ != scheduler_->InvalidToken());
token_ = scheduler_->InvalidToken();
simulated_event_loop_->HandleEvent();
});
}
void SimulatedChannel::MakeRawWatcher(SimulatedWatcher *watcher) {
CheckReaderCount();
watcher->SetSimulatedChannel(this);
watchers_.emplace_back(watcher);
}
::std::unique_ptr<RawSender> SimulatedChannel::MakeRawSender(
SimulatedEventLoop *event_loop) {
return ::std::unique_ptr<RawSender>(new SimulatedSender(this, event_loop));
}
::std::unique_ptr<RawFetcher> SimulatedChannel::MakeRawFetcher(
EventLoop *event_loop) {
CheckReaderCount();
::std::unique_ptr<SimulatedFetcher> fetcher(
new SimulatedFetcher(event_loop, this));
fetchers_.push_back(fetcher.get());
return ::std::move(fetcher);
}
uint32_t SimulatedChannel::Send(std::shared_ptr<SimulatedMessage> message) {
const uint32_t queue_index = next_queue_index_.index();
message->context.queue_index = queue_index;
message->context.data = message->data(channel()->max_size()) +
channel()->max_size() - message->context.size;
next_queue_index_ = next_queue_index_.Increment();
latest_message_ = message;
for (SimulatedWatcher *watcher : watchers_) {
if (watcher->has_run()) {
watcher->Schedule(message);
}
}
for (auto &fetcher : fetchers_) {
fetcher->Enqueue(message);
}
return queue_index;
}
void SimulatedChannel::UnregisterFetcher(SimulatedFetcher *fetcher) {
fetchers_.erase(::std::find(fetchers_.begin(), fetchers_.end(), fetcher));
}
SimulatedSender::SimulatedSender(SimulatedChannel *simulated_channel,
SimulatedEventLoop *event_loop)
: RawSender(event_loop, simulated_channel->channel()),
simulated_channel_(simulated_channel),
event_loop_(event_loop) {
simulated_channel_->CountSenderCreated();
}
SimulatedSender::~SimulatedSender() {
simulated_channel_->CountSenderDestroyed();
}
bool SimulatedSender::DoSend(size_t length,
monotonic_clock::time_point monotonic_remote_time,
realtime_clock::time_point realtime_remote_time,
uint32_t remote_queue_index,
const UUID &remote_boot_uuid) {
// The allocations in here are due to infrastructure and don't count in the
// no mallocs in RT code.
ScopedNotRealtime nrt;
CHECK_LE(length, size()) << ": Attempting to send too big a message.";
message_->context.monotonic_event_time = event_loop_->monotonic_now();
message_->context.monotonic_remote_time = monotonic_remote_time;
message_->context.remote_queue_index = remote_queue_index;
message_->context.realtime_event_time = event_loop_->realtime_now();
message_->context.realtime_remote_time = realtime_remote_time;
message_->context.remote_boot_uuid = remote_boot_uuid;
CHECK_LE(length, message_->context.size);
message_->context.size = length;
// TODO(austin): Track sending too fast.
sent_queue_index_ = simulated_channel_->Send(message_);
monotonic_sent_time_ = event_loop_->monotonic_now();
realtime_sent_time_ = event_loop_->realtime_now();
// Drop the reference to the message so that we allocate a new message for
// next time. Otherwise we will continue to reuse the same memory for all
// messages and corrupt it.
message_.reset();
return true;
}
bool SimulatedSender::DoSend(const void *msg, size_t size,
monotonic_clock::time_point monotonic_remote_time,
realtime_clock::time_point realtime_remote_time,
uint32_t remote_queue_index,
const UUID &remote_boot_uuid) {
CHECK_LE(size, this->size())
<< ": Attempting to send too big a message on "
<< configuration::CleanedChannelToString(simulated_channel_->channel());
// This is wasteful, but since flatbuffers fill from the back end of the
// queue, we need it to be full sized.
message_ = SimulatedMessage::Make(simulated_channel_);
// Now fill in the message. size is already populated above, and
// queue_index will be populated in simulated_channel_. Put this at the
// back of the data segment.
memcpy(message_->data(simulated_channel_->max_size()) +
simulated_channel_->max_size() - size,
msg, size);
return DoSend(size, monotonic_remote_time, realtime_remote_time,
remote_queue_index, remote_boot_uuid);
}
SimulatedTimerHandler::SimulatedTimerHandler(
EventScheduler *scheduler, SimulatedEventLoop *simulated_event_loop,
::std::function<void()> fn)
: TimerHandler(simulated_event_loop, std::move(fn)),
simulated_event_loop_(simulated_event_loop),
event_(this),
scheduler_(scheduler),
token_(scheduler_->InvalidToken()) {}
void SimulatedTimerHandler::Setup(monotonic_clock::time_point base,
monotonic_clock::duration repeat_offset) {
// The allocations in here are due to infrastructure and don't count in the no
// mallocs in RT code.
ScopedNotRealtime nrt;
Disable();
const ::aos::monotonic_clock::time_point monotonic_now =
simulated_event_loop_->monotonic_now();
base_ = base;
repeat_offset_ = repeat_offset;
token_ = scheduler_->Schedule(std::max(base, monotonic_now), [this]() {
DCHECK(token_ != scheduler_->InvalidToken());
token_ = scheduler_->InvalidToken();
simulated_event_loop_->HandleEvent();
});
event_.set_event_time(base_);
simulated_event_loop_->AddEvent(&event_);
}
void SimulatedTimerHandler::HandleEvent() {
VLOG(1) << "Timer " << name();
const ::aos::monotonic_clock::time_point monotonic_now =
simulated_event_loop_->monotonic_now();
logging::ScopedLogRestorer prev_logger;
if (simulated_event_loop_->log_impl_) {
prev_logger.Swap(simulated_event_loop_->log_impl_);
}
if (token_ != scheduler_->InvalidToken()) {
scheduler_->Deschedule(token_);
token_ = scheduler_->InvalidToken();
}
if (repeat_offset_ != ::aos::monotonic_clock::zero()) {
// Reschedule.
while (base_ <= monotonic_now) base_ += repeat_offset_;
token_ = scheduler_->Schedule(base_, [this]() {
DCHECK(token_ != scheduler_->InvalidToken());
token_ = scheduler_->InvalidToken();
simulated_event_loop_->HandleEvent();
});
event_.set_event_time(base_);
simulated_event_loop_->AddEvent(&event_);
}
{
ScopedMarkRealtimeRestorer rt(simulated_event_loop_->priority() > 0);
Call([monotonic_now]() { return monotonic_now; }, monotonic_now);
}
}
void SimulatedTimerHandler::Disable() {
simulated_event_loop_->RemoveEvent(&event_);
if (token_ != scheduler_->InvalidToken()) {
scheduler_->Deschedule(token_);
token_ = scheduler_->InvalidToken();
}
}
SimulatedPhasedLoopHandler::SimulatedPhasedLoopHandler(
EventScheduler *scheduler, SimulatedEventLoop *simulated_event_loop,
::std::function<void(int)> fn, const monotonic_clock::duration interval,
const monotonic_clock::duration offset)
: PhasedLoopHandler(simulated_event_loop, std::move(fn), interval, offset),
simulated_event_loop_(simulated_event_loop),
event_(this),
scheduler_(scheduler),
token_(scheduler_->InvalidToken()) {}
SimulatedPhasedLoopHandler::~SimulatedPhasedLoopHandler() {
if (token_ != scheduler_->InvalidToken()) {
scheduler_->Deschedule(token_);
token_ = scheduler_->InvalidToken();
}
simulated_event_loop_->RemoveEvent(&event_);
}
void SimulatedPhasedLoopHandler::HandleEvent() {
VLOG(1) << "Phased loop " << name();
monotonic_clock::time_point monotonic_now =
simulated_event_loop_->monotonic_now();
logging::ScopedLogRestorer prev_logger;
if (simulated_event_loop_->log_impl_) {
prev_logger.Swap(simulated_event_loop_->log_impl_);
}
{
ScopedMarkRealtimeRestorer rt(simulated_event_loop_->priority() > 0);
Call([monotonic_now]() { return monotonic_now; },
[this](monotonic_clock::time_point sleep_time) {
Schedule(sleep_time);
});
}
}
void SimulatedPhasedLoopHandler::Schedule(
monotonic_clock::time_point sleep_time) {
// The allocations in here are due to infrastructure and don't count in the no
// mallocs in RT code.
ScopedNotRealtime nrt;
if (token_ != scheduler_->InvalidToken()) {
scheduler_->Deschedule(token_);
token_ = scheduler_->InvalidToken();
}
token_ = scheduler_->Schedule(sleep_time, [this]() {
DCHECK(token_ != scheduler_->InvalidToken());
token_ = scheduler_->InvalidToken();
simulated_event_loop_->HandleEvent();
});
event_.set_event_time(sleep_time);
simulated_event_loop_->AddEvent(&event_);
}
NodeEventLoopFactory::NodeEventLoopFactory(
EventSchedulerScheduler *scheduler_scheduler,
SimulatedEventLoopFactory *factory, const Node *node,
std::vector<std::pair<EventLoop *, std::function<void(bool)>>>
*raw_event_loops)
: factory_(factory), node_(node), raw_event_loops_(raw_event_loops) {
scheduler_scheduler->AddEventScheduler(&scheduler_);
}
SimulatedEventLoopFactory::SimulatedEventLoopFactory(
const Configuration *configuration)
: configuration_(CHECK_NOTNULL(configuration)),
nodes_(configuration::GetNodes(configuration_)) {
CHECK(IsInitialized()) << ": Need to initialize AOS first.";
for (const Node *node : nodes_) {
node_factories_.emplace_back(new NodeEventLoopFactory(
&scheduler_scheduler_, this, node, &raw_event_loops_));
}
if (configuration::MultiNode(configuration)) {
bridge_ = std::make_unique<message_bridge::SimulatedMessageBridge>(this);
}
}
SimulatedEventLoopFactory::~SimulatedEventLoopFactory() {}
NodeEventLoopFactory *SimulatedEventLoopFactory::GetNodeEventLoopFactory(
const Node *node) {
auto result = std::find_if(
node_factories_.begin(), node_factories_.end(),
[node](const std::unique_ptr<NodeEventLoopFactory> &node_factory) {
return node_factory->node() == node;
});
CHECK(result != node_factories_.end())
<< ": Failed to find node " << FlatbufferToJson(node);
return result->get();
}
void SimulatedEventLoopFactory::SetTimeConverter(
TimeConverter *time_converter) {
for (std::unique_ptr<NodeEventLoopFactory> &factory : node_factories_) {
factory->SetTimeConverter(time_converter);
}
}
::std::unique_ptr<EventLoop> SimulatedEventLoopFactory::MakeEventLoop(
std::string_view name, const Node *node) {
if (node == nullptr) {
CHECK(!configuration::MultiNode(configuration()))
<< ": Can't make a single node event loop in a multi-node world.";
} else {
CHECK(configuration::MultiNode(configuration()))
<< ": Can't make a multi-node event loop in a single-node world.";
}
return GetNodeEventLoopFactory(node)->MakeEventLoop(name);
}
::std::unique_ptr<EventLoop> NodeEventLoopFactory::MakeEventLoop(
std::string_view name) {
CHECK(!scheduler_.is_running())
<< ": Can't create an event loop while running";
pid_t tid = tid_;
++tid_;
::std::unique_ptr<SimulatedEventLoop> result(new SimulatedEventLoop(
&scheduler_, this, &channels_, factory_->configuration(),
raw_event_loops_, node_, tid));
result->set_name(name);
result->set_send_delay(factory_->send_delay());
return std::move(result);
}
void NodeEventLoopFactory::Disconnect(const Node *other) {
factory_->bridge_->Disconnect(node_, other);
}
void NodeEventLoopFactory::Connect(const Node *other) {
factory_->bridge_->Connect(node_, other);
}
void SimulatedEventLoopFactory::RunFor(monotonic_clock::duration duration) {
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(true);
}
scheduler_scheduler_.RunFor(duration);
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(false);
}
}
void SimulatedEventLoopFactory::Run() {
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(true);
}
scheduler_scheduler_.Run();
for (const std::pair<EventLoop *, std::function<void(bool)>> &event_loop :
raw_event_loops_) {
event_loop.second(false);
}
}
void SimulatedEventLoopFactory::Exit() { scheduler_scheduler_.Exit(); }
void SimulatedEventLoopFactory::DisableForwarding(const Channel *channel) {
CHECK(bridge_) << ": Can't disable forwarding without a message bridge.";
bridge_->DisableForwarding(channel);
}
void SimulatedEventLoopFactory::DisableStatistics() {
CHECK(bridge_) << ": Can't disable statistics without a message bridge.";
bridge_->DisableStatistics();
}
void SimulatedEventLoopFactory::SkipTimingReport() {
CHECK(bridge_) << ": Can't skip timing reports without a message bridge.";
bridge_->SkipTimingReport();
}
} // namespace aos