| #include "motors/core/kinetis.h" |
| |
| #include <inttypes.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include <atomic> |
| |
| #include "motors/core/time.h" |
| #include "motors/peripheral/adc.h" |
| #include "motors/usb/cdc.h" |
| #include "motors/usb/usb.h" |
| #include "motors/util.h" |
| |
| namespace frc971 { |
| namespace motors { |
| namespace { |
| |
| struct Fet12AdcReadings { |
| // 1100 off, 3160 floored |
| uint16_t throttle; |
| }; |
| |
| void AdcInitFet12() { |
| AdcInitCommon(); |
| |
| // EI2C_SCL (end pin) ADC0_SE13 |
| PORTB_PCR3 = PORT_PCR_MUX(0); |
| } |
| |
| Fet12AdcReadings AdcReadFet12(const DisableInterrupts &) { |
| Fet12AdcReadings r; |
| |
| ADC0_SC1A = 13; |
| while (!(ADC0_SC1A & ADC_SC1_COCO)) { |
| } |
| r.throttle = ADC0_RA; |
| |
| return r; |
| } |
| |
| bool ReadButton() { return PERIPHERAL_BITBAND(GPIOB_PDIR, 2); } |
| |
| ::std::atomic<teensy::AcmTty *> global_stdout{nullptr}; |
| |
| extern "C" { |
| |
| void *__stack_chk_guard = (void *)0x67111971; |
| void __stack_chk_fail(void) { |
| while (true) { |
| GPIOC_PSOR = (1 << 5); |
| printf("Stack corruption detected\n"); |
| delay(1000); |
| GPIOC_PCOR = (1 << 5); |
| delay(1000); |
| } |
| } |
| |
| int _write(int /*file*/, char *ptr, int len) { |
| teensy::AcmTty *const tty = global_stdout.load(::std::memory_order_acquire); |
| if (tty != nullptr) { |
| return tty->Write(ptr, len); |
| } |
| return 0; |
| } |
| |
| void __stack_chk_fail(void); |
| |
| extern char *__brkval; |
| extern uint32_t __bss_ram_start__[]; |
| extern uint32_t __heap_start__[]; |
| extern uint32_t __stack_end__[]; |
| |
| } // extern "C" |
| |
| constexpr int kOutputCounts = 37500; |
| constexpr int kOutputPrescalerShift = 4; |
| |
| void SetOutputWidth(float ms) { |
| static constexpr float kScale = static_cast<float>( |
| static_cast<double>(kOutputCounts) / 10.0 /* milliseconds per period */); |
| const int width = static_cast<int>(ms * kScale + 0.5f); |
| FTM3->C6V = width - 1; |
| FTM3->PWMLOAD = FTM_PWMLOAD_LDOK; |
| } |
| |
| } // namespace |
| |
| extern "C" int main(void) { |
| // for background about this startup delay, please see these conversations |
| // https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980 |
| // https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273 |
| delay(400); |
| |
| // Set all interrupts to the second-lowest priority to start with. |
| for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD); |
| |
| // Now set priorities for all the ones we care about. They only have meaning |
| // relative to each other, which means centralizing them here makes it a lot |
| // more manageable. |
| NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7); |
| NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3); |
| |
| // Set the LED's pin to output mode. |
| PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1; |
| PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1); |
| |
| // EI2C_SCL (not end) PTB3 |
| PORTB_PCR2 = PORT_PCR_MUX(1); |
| |
| #if 0 |
| PERIPHERAL_BITBAND(GPIOA_PDDR, 15) = 1; |
| PORTA_PCR15 = PORT_PCR_DSE | PORT_PCR_MUX(1); |
| #endif |
| |
| DMA.CR = M_DMA_EMLM; |
| |
| teensy::UsbDevice usb_device(0, 0x16c0, 0x0490); |
| usb_device.SetManufacturer("FRC 971 Spartan Robotics"); |
| usb_device.SetProduct("FET12 power wheels mode"); |
| teensy::AcmTty tty1(&usb_device); |
| teensy::AcmTty tty2(&usb_device); |
| global_stdout.store(&tty1, ::std::memory_order_release); |
| usb_device.Initialize(); |
| |
| AdcInitFet12(); |
| delay(1000); |
| |
| #if 0 |
| GPIOD_PCOR = 1 << 3; |
| PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1; |
| PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1); |
| delay(1000); |
| GPIOD_PSOR = 1 << 3; |
| delay(1000); |
| GPIOD_PCOR = 1 << 3; |
| delay(1000); |
| #endif |
| |
| delay(1000); |
| |
| // Index pin |
| PORTA_PCR7 = PORT_PCR_MUX(1); |
| // FTM1_QD_PH{A,B} |
| PORTB_PCR0 = PORT_PCR_MUX(6); |
| PORTB_PCR1 = PORT_PCR_MUX(6); |
| |
| // FTM3_CH6 for PWM_IN (used as output) |
| PORTE_PCR11 = PORT_PCR_MUX(6); |
| |
| auto *const encoder_ftm = FTM1; |
| // PWMSYNC doesn't matter because we set SYNCMODE down below. |
| encoder_ftm->MODE = FTM_MODE_WPDIS; |
| encoder_ftm->MODE = FTM_MODE_WPDIS | FTM_MODE_FTMEN; |
| encoder_ftm->SC = |
| FTM_SC_CLKS(1) /* Use the system clock (not sure it matters) */ | |
| FTM_SC_PS(0) /* Don't prescale the clock (not sure it matters) */; |
| |
| encoder_ftm->MOD = 1023; |
| |
| // I think you have to set this to something other than 0 for the quadrature |
| // encoder mode to actually work? This is "input capture on rising edge only", |
| // which should be fine. |
| encoder_ftm->C0SC = FTM_CSC_ELSA; |
| encoder_ftm->C1SC = FTM_CSC_ELSA; |
| |
| encoder_ftm->FILTER = FTM_FILTER_CH0FVAL(0) /* No filter */ | |
| FTM_FILTER_CH1FVAL(0) /* No filter */; |
| |
| // Could set PHAFLTREN and PHBFLTREN here to enable the filters. |
| encoder_ftm->QDCTRL = FTM_QDCTRL_QUADEN; |
| |
| encoder_ftm->SYNCONF = |
| FTM_SYNCONF_SWWRBUF /* Software trigger flushes MOD */ | |
| FTM_SYNCONF_SWRSTCNT /* Software trigger resets the count */ | |
| FTM_SYNCONF_SYNCMODE /* Use the new synchronization mode */; |
| |
| encoder_ftm->SYNC = FTM_SYNC_SWSYNC /* Flush everything out right now */; |
| // Wait for the software synchronization to finish. |
| while (encoder_ftm->SYNC & FTM_SYNC_SWSYNC) { |
| } |
| |
| auto *const pwm_ftm = FTM3; |
| // PWMSYNC doesn't matter because we set SYNCMODE down below. |
| pwm_ftm->MODE = FTM_MODE_WPDIS; |
| pwm_ftm->MODE = FTM_MODE_WPDIS | FTM_MODE_FTMEN; |
| pwm_ftm->SC = FTM_SC_CLKS(0) /* Disable counting for now */ | |
| FTM_SC_PS(kOutputPrescalerShift); |
| |
| pwm_ftm->CNTIN = 0; |
| pwm_ftm->CNT = 0; |
| pwm_ftm->MOD = kOutputCounts - 1; |
| |
| // High-true edge-aligned mode (turns on at start, off at match). |
| pwm_ftm->C0SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| pwm_ftm->C1SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| pwm_ftm->C2SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| pwm_ftm->C3SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| pwm_ftm->C4SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| pwm_ftm->C5SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| pwm_ftm->C6SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| pwm_ftm->C7SC = FTM_CSC_MSB | FTM_CSC_ELSB; |
| |
| pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ | |
| FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ | |
| FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ | |
| FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */; |
| |
| // Initialize all the channels to 0. |
| pwm_ftm->OUTINIT = 0; |
| |
| // All of the channels are active high. |
| pwm_ftm->POL = 0; |
| |
| pwm_ftm->SYNCONF = |
| FTM_SYNCONF_HWWRBUF /* Hardware trigger flushes switching points */ | |
| FTM_SYNCONF_SWWRBUF /* Software trigger flushes switching points */ | |
| FTM_SYNCONF_SWRSTCNT /* Software trigger resets the count */ | |
| FTM_SYNCONF_SYNCMODE /* Use the new synchronization mode */; |
| |
| // Don't want any intermediate loading points. |
| pwm_ftm->PWMLOAD = 0; |
| |
| // This has to happen after messing with SYNCONF, and should happen after |
| // messing with various other things so the values can get flushed out of the |
| // buffers. |
| pwm_ftm->SYNC = FTM_SYNC_SWSYNC /* Flush everything out right now */ | |
| FTM_SYNC_CNTMAX /* Load new values at the end of the cycle */; |
| // Wait for the software synchronization to finish. |
| while (pwm_ftm->SYNC & FTM_SYNC_SWSYNC) { |
| } |
| |
| // Don't let any memory accesses sneak past here, because we actually |
| // need everything to be starting up. |
| __asm__("" :: : "memory"); |
| |
| // Give everything a chance to get going. |
| delay(100); |
| |
| printf("Ram start: %p\n", __bss_ram_start__); |
| printf("Heap start: %p\n", __heap_start__); |
| printf("Heap end: %p\n", __brkval); |
| printf("Stack start: %p\n", __stack_end__); |
| |
| encoder_ftm->MODE &= ~FTM_MODE_WPDIS; |
| pwm_ftm->SC = FTM_SC_TOIE /* Interrupt on overflow */ | |
| FTM_SC_CLKS(1) /* Use the system clock */ | |
| FTM_SC_PS(kOutputPrescalerShift); |
| pwm_ftm->MODE &= ~FTM_MODE_WPDIS; |
| |
| GPIOC_PSOR = 1 << 5; |
| |
| uint16_t old_encoder = FTM1->CNT; |
| uint32_t start_time = micros(); |
| while (true) { |
| const uint32_t end_time = start_time + UINT32_C(500); |
| while (micros() < end_time) { |
| } |
| start_time = end_time; |
| |
| Fet12AdcReadings adc_readings; |
| { |
| DisableInterrupts disable_interrupts; |
| adc_readings = AdcReadFet12(disable_interrupts); |
| } |
| const float pedal_position = ::std::min( |
| 1.0f, |
| ::std::max(0.0f, static_cast<float>(adc_readings.throttle - 1200) / |
| static_cast<float>(3120 - 1200))); |
| |
| const uint16_t new_encoder = FTM1->CNT; |
| // Full speed is ~418. |
| // Low gear is positive. |
| int16_t encoder_delta = |
| static_cast<int16_t>(new_encoder) - static_cast<int16_t>(old_encoder); |
| if (encoder_delta < -512) { |
| encoder_delta += 1024; |
| } |
| if (encoder_delta > 512) { |
| encoder_delta -= 1024; |
| } |
| old_encoder = new_encoder; |
| |
| // Positive -> low gear |
| float speed = ::std::min( |
| 1.0f, ::std::max(-1.0f, static_cast<float>(encoder_delta) / 418.0f)); |
| |
| float out_command; |
| if (ReadButton()) { |
| out_command = pedal_position; |
| } else { |
| out_command = -pedal_position; |
| } |
| |
| static constexpr float kMaxCurrentFull = 0.155f; |
| static constexpr float kMaxCurrentStopped = 0.29f; |
| float abs_speed; |
| if (speed > 0.0f) { |
| abs_speed = speed; |
| } else { |
| abs_speed = -speed; |
| } |
| float max_current = |
| abs_speed * (kMaxCurrentFull - kMaxCurrentStopped) + kMaxCurrentStopped; |
| if (abs_speed < 0.06f) { |
| max_current = 0.27f; |
| } |
| if (speed > 0.0f) { |
| out_command = |
| ::std::min(speed + max_current, |
| ::std::max(speed - 2.0f * max_current, out_command)); |
| } else { |
| out_command = ::std::min(speed + 2.0f * max_current, |
| ::std::max(speed - max_current, out_command)); |
| } |
| |
| static float slew_limited_command = 0.0f; |
| constexpr float kMaxChangePerCycle = 1.0f / 150.0f; |
| |
| if (out_command < slew_limited_command - kMaxChangePerCycle) { |
| out_command = slew_limited_command - kMaxChangePerCycle; |
| } else if (out_command > slew_limited_command + kMaxChangePerCycle) { |
| out_command = slew_limited_command + kMaxChangePerCycle; |
| } |
| |
| slew_limited_command = out_command; |
| |
| const float pwm_out = 1.5f + -slew_limited_command / 2.0f; |
| SetOutputWidth(pwm_out); |
| |
| static int i = 0; |
| if (i == 100) { |
| i = 0; |
| printf("enc %" PRIu32 " throttle %" PRIu16 " %d out %d %d %d\n", |
| FTM1->CNT, adc_readings.throttle, ReadButton(), |
| (int)(pwm_out * 1000), (int)encoder_delta, |
| (int)(abs_speed * 1000)); |
| } |
| ++i; |
| } |
| |
| return 0; |
| } |
| |
| } // namespace motors |
| } // namespace frc971 |