blob: 668dbe60dc78d1a714fc28b5e789f1aa79f5b05e [file] [log] [blame]
#include "motors/core/kinetis.h"
#include <inttypes.h>
#include <math.h>
#include <stdio.h>
#include <atomic>
#include "motors/core/time.h"
#include "motors/peripheral/adc.h"
#include "motors/usb/cdc.h"
#include "motors/usb/usb.h"
#include "motors/util.h"
namespace frc971 {
namespace motors {
namespace {
struct Fet12AdcReadings {
// 1100 off, 3160 floored
uint16_t throttle;
};
void AdcInitFet12() {
AdcInitCommon();
// EI2C_SCL (end pin) ADC0_SE13
PORTB_PCR3 = PORT_PCR_MUX(0);
}
Fet12AdcReadings AdcReadFet12(const DisableInterrupts &) {
Fet12AdcReadings r;
ADC0_SC1A = 13;
while (!(ADC0_SC1A & ADC_SC1_COCO)) {
}
r.throttle = ADC0_RA;
return r;
}
bool ReadButton() { return PERIPHERAL_BITBAND(GPIOB_PDIR, 2); }
::std::atomic<teensy::AcmTty *> global_stdout{nullptr};
extern "C" {
void *__stack_chk_guard = (void *)0x67111971;
void __stack_chk_fail(void) {
while (true) {
GPIOC_PSOR = (1 << 5);
printf("Stack corruption detected\n");
delay(1000);
GPIOC_PCOR = (1 << 5);
delay(1000);
}
}
int _write(int /*file*/, char *ptr, int len) {
teensy::AcmTty *const tty = global_stdout.load(::std::memory_order_acquire);
if (tty != nullptr) {
return tty->Write(ptr, len);
}
return 0;
}
void __stack_chk_fail(void);
extern char *__brkval;
extern uint32_t __bss_ram_start__[];
extern uint32_t __heap_start__[];
extern uint32_t __stack_end__[];
} // extern "C"
constexpr int kOutputCounts = 37500;
constexpr int kOutputPrescalerShift = 4;
void SetOutputWidth(float ms) {
static constexpr float kScale = static_cast<float>(
static_cast<double>(kOutputCounts) / 10.0 /* milliseconds per period */);
const int width = static_cast<int>(ms * kScale + 0.5f);
FTM3->C6V = width - 1;
FTM3->PWMLOAD = FTM_PWMLOAD_LDOK;
}
} // namespace
extern "C" int main(void) {
// for background about this startup delay, please see these conversations
// https://forum.pjrc.com/threads/36606-startup-time-(400ms)?p=113980&viewfull=1#post113980
// https://forum.pjrc.com/threads/31290-Teensey-3-2-Teensey-Loader-1-24-Issues?p=87273&viewfull=1#post87273
delay(400);
// Set all interrupts to the second-lowest priority to start with.
for (int i = 0; i < NVIC_NUM_INTERRUPTS; i++) NVIC_SET_SANE_PRIORITY(i, 0xD);
// Now set priorities for all the ones we care about. They only have meaning
// relative to each other, which means centralizing them here makes it a lot
// more manageable.
NVIC_SET_SANE_PRIORITY(IRQ_USBOTG, 0x7);
NVIC_SET_SANE_PRIORITY(IRQ_FTM0, 0x3);
// Set the LED's pin to output mode.
PERIPHERAL_BITBAND(GPIOC_PDDR, 5) = 1;
PORTC_PCR5 = PORT_PCR_DSE | PORT_PCR_MUX(1);
// EI2C_SCL (not end) PTB3
PORTB_PCR2 = PORT_PCR_MUX(1);
#if 0
PERIPHERAL_BITBAND(GPIOA_PDDR, 15) = 1;
PORTA_PCR15 = PORT_PCR_DSE | PORT_PCR_MUX(1);
#endif
DMA.CR = M_DMA_EMLM;
teensy::UsbDevice usb_device(0, 0x16c0, 0x0490);
usb_device.SetManufacturer("FRC 971 Spartan Robotics");
usb_device.SetProduct("FET12 power wheels mode");
teensy::AcmTty tty1(&usb_device);
teensy::AcmTty tty2(&usb_device);
global_stdout.store(&tty1, ::std::memory_order_release);
usb_device.Initialize();
AdcInitFet12();
delay(1000);
#if 0
GPIOD_PCOR = 1 << 3;
PERIPHERAL_BITBAND(GPIOD_PDDR, 3) = 1;
PORTD_PCR3 = PORT_PCR_DSE | PORT_PCR_MUX(1);
delay(1000);
GPIOD_PSOR = 1 << 3;
delay(1000);
GPIOD_PCOR = 1 << 3;
delay(1000);
#endif
delay(1000);
// Index pin
PORTA_PCR7 = PORT_PCR_MUX(1);
// FTM1_QD_PH{A,B}
PORTB_PCR0 = PORT_PCR_MUX(6);
PORTB_PCR1 = PORT_PCR_MUX(6);
// FTM3_CH6 for PWM_IN (used as output)
PORTE_PCR11 = PORT_PCR_MUX(6);
auto *const encoder_ftm = FTM1;
// PWMSYNC doesn't matter because we set SYNCMODE down below.
encoder_ftm->MODE = FTM_MODE_WPDIS;
encoder_ftm->MODE = FTM_MODE_WPDIS | FTM_MODE_FTMEN;
encoder_ftm->SC =
FTM_SC_CLKS(1) /* Use the system clock (not sure it matters) */ |
FTM_SC_PS(0) /* Don't prescale the clock (not sure it matters) */;
encoder_ftm->MOD = 1023;
// I think you have to set this to something other than 0 for the quadrature
// encoder mode to actually work? This is "input capture on rising edge only",
// which should be fine.
encoder_ftm->C0SC = FTM_CSC_ELSA;
encoder_ftm->C1SC = FTM_CSC_ELSA;
encoder_ftm->FILTER = FTM_FILTER_CH0FVAL(0) /* No filter */ |
FTM_FILTER_CH1FVAL(0) /* No filter */;
// Could set PHAFLTREN and PHBFLTREN here to enable the filters.
encoder_ftm->QDCTRL = FTM_QDCTRL_QUADEN;
encoder_ftm->SYNCONF =
FTM_SYNCONF_SWWRBUF /* Software trigger flushes MOD */ |
FTM_SYNCONF_SWRSTCNT /* Software trigger resets the count */ |
FTM_SYNCONF_SYNCMODE /* Use the new synchronization mode */;
encoder_ftm->SYNC = FTM_SYNC_SWSYNC /* Flush everything out right now */;
// Wait for the software synchronization to finish.
while (encoder_ftm->SYNC & FTM_SYNC_SWSYNC) {
}
auto *const pwm_ftm = FTM3;
// PWMSYNC doesn't matter because we set SYNCMODE down below.
pwm_ftm->MODE = FTM_MODE_WPDIS;
pwm_ftm->MODE = FTM_MODE_WPDIS | FTM_MODE_FTMEN;
pwm_ftm->SC = FTM_SC_CLKS(0) /* Disable counting for now */ |
FTM_SC_PS(kOutputPrescalerShift);
pwm_ftm->CNTIN = 0;
pwm_ftm->CNT = 0;
pwm_ftm->MOD = kOutputCounts - 1;
// High-true edge-aligned mode (turns on at start, off at match).
pwm_ftm->C0SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->C1SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->C2SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->C3SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->C4SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->C5SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->C6SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->C7SC = FTM_CSC_MSB | FTM_CSC_ELSB;
pwm_ftm->COMBINE = FTM_COMBINE_SYNCEN3 /* Synchronize updates usefully */ |
FTM_COMBINE_SYNCEN2 /* Synchronize updates usefully */ |
FTM_COMBINE_SYNCEN1 /* Synchronize updates usefully */ |
FTM_COMBINE_SYNCEN0 /* Synchronize updates usefully */;
// Initialize all the channels to 0.
pwm_ftm->OUTINIT = 0;
// All of the channels are active high.
pwm_ftm->POL = 0;
pwm_ftm->SYNCONF =
FTM_SYNCONF_HWWRBUF /* Hardware trigger flushes switching points */ |
FTM_SYNCONF_SWWRBUF /* Software trigger flushes switching points */ |
FTM_SYNCONF_SWRSTCNT /* Software trigger resets the count */ |
FTM_SYNCONF_SYNCMODE /* Use the new synchronization mode */;
// Don't want any intermediate loading points.
pwm_ftm->PWMLOAD = 0;
// This has to happen after messing with SYNCONF, and should happen after
// messing with various other things so the values can get flushed out of the
// buffers.
pwm_ftm->SYNC = FTM_SYNC_SWSYNC /* Flush everything out right now */ |
FTM_SYNC_CNTMAX /* Load new values at the end of the cycle */;
// Wait for the software synchronization to finish.
while (pwm_ftm->SYNC & FTM_SYNC_SWSYNC) {
}
// Don't let any memory accesses sneak past here, because we actually
// need everything to be starting up.
__asm__("" :: : "memory");
// Give everything a chance to get going.
delay(100);
printf("Ram start: %p\n", __bss_ram_start__);
printf("Heap start: %p\n", __heap_start__);
printf("Heap end: %p\n", __brkval);
printf("Stack start: %p\n", __stack_end__);
encoder_ftm->MODE &= ~FTM_MODE_WPDIS;
pwm_ftm->SC = FTM_SC_TOIE /* Interrupt on overflow */ |
FTM_SC_CLKS(1) /* Use the system clock */ |
FTM_SC_PS(kOutputPrescalerShift);
pwm_ftm->MODE &= ~FTM_MODE_WPDIS;
GPIOC_PSOR = 1 << 5;
uint16_t old_encoder = FTM1->CNT;
uint32_t start_time = micros();
while (true) {
const uint32_t end_time = start_time + UINT32_C(500);
while (micros() < end_time) {
}
start_time = end_time;
Fet12AdcReadings adc_readings;
{
DisableInterrupts disable_interrupts;
adc_readings = AdcReadFet12(disable_interrupts);
}
const float pedal_position = ::std::min(
1.0f,
::std::max(0.0f, static_cast<float>(adc_readings.throttle - 1200) /
static_cast<float>(3120 - 1200)));
const uint16_t new_encoder = FTM1->CNT;
// Full speed is ~418.
// Low gear is positive.
int16_t encoder_delta =
static_cast<int16_t>(new_encoder) - static_cast<int16_t>(old_encoder);
if (encoder_delta < -512) {
encoder_delta += 1024;
}
if (encoder_delta > 512) {
encoder_delta -= 1024;
}
old_encoder = new_encoder;
// Positive -> low gear
float speed = ::std::min(
1.0f, ::std::max(-1.0f, static_cast<float>(encoder_delta) / 418.0f));
float out_command;
if (ReadButton()) {
out_command = pedal_position;
} else {
out_command = -pedal_position;
}
static constexpr float kMaxCurrentFull = 0.155f;
static constexpr float kMaxCurrentStopped = 0.29f;
float abs_speed;
if (speed > 0.0f) {
abs_speed = speed;
} else {
abs_speed = -speed;
}
float max_current =
abs_speed * (kMaxCurrentFull - kMaxCurrentStopped) + kMaxCurrentStopped;
if (abs_speed < 0.06f) {
max_current = 0.27f;
}
if (speed > 0.0f) {
out_command =
::std::min(speed + max_current,
::std::max(speed - 2.0f * max_current, out_command));
} else {
out_command = ::std::min(speed + 2.0f * max_current,
::std::max(speed - max_current, out_command));
}
static float slew_limited_command = 0.0f;
constexpr float kMaxChangePerCycle = 1.0f / 150.0f;
if (out_command < slew_limited_command - kMaxChangePerCycle) {
out_command = slew_limited_command - kMaxChangePerCycle;
} else if (out_command > slew_limited_command + kMaxChangePerCycle) {
out_command = slew_limited_command + kMaxChangePerCycle;
}
slew_limited_command = out_command;
const float pwm_out = 1.5f + -slew_limited_command / 2.0f;
SetOutputWidth(pwm_out);
static int i = 0;
if (i == 100) {
i = 0;
printf("enc %" PRIu32 " throttle %" PRIu16 " %d out %d %d %d\n",
FTM1->CNT, adc_readings.throttle, ReadButton(),
(int)(pwm_out * 1000), (int)encoder_delta,
(int)(abs_speed * 1000));
}
++i;
}
return 0;
}
} // namespace motors
} // namespace frc971