blob: b89613fcd0d994a13c1756d9f10a21694d51e726 [file] [log] [blame]
#ifndef Y2022_CONSTANTS_H_
#define Y2022_CONSTANTS_H_
#include <array>
#include <cmath>
#include <cstdint>
#include "frc971/constants.h"
#include "frc971/control_loops/pose.h"
#include "frc971/control_loops/static_zeroing_single_dof_profiled_subsystem.h"
#include "frc971/shooter_interpolation/interpolation.h"
#include "frc971/zeroing/pot_and_absolute_encoder.h"
#include "y2022/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
#include "y2022/control_loops/superstructure/catapult/catapult_plant.h"
#include "y2022/control_loops/superstructure/climber/climber_plant.h"
#include "y2022/control_loops/superstructure/intake/intake_plant.h"
#include "y2022/control_loops/superstructure/turret/turret_plant.h"
using ::frc971::shooter_interpolation::InterpolationTable;
namespace y2022::constants {
constexpr uint16_t kCompTeamNumber = 971;
constexpr uint16_t kPracticeTeamNumber = 9971;
constexpr uint16_t kCodingRobotTeamNumber = 7971;
struct Values {
static const int kZeroingSampleSize = 200;
static constexpr double kDrivetrainCyclesPerRevolution() { return 512.0; }
static constexpr double kDrivetrainEncoderCountsPerRevolution() {
return kDrivetrainCyclesPerRevolution() * 4;
}
static constexpr double kDrivetrainEncoderRatio() { return 1.0; }
static constexpr double kMaxDrivetrainEncoderPulsesPerSecond() {
return control_loops::drivetrain::kFreeSpeed / (2.0 * M_PI) *
control_loops::drivetrain::kHighOutputRatio /
constants::Values::kDrivetrainEncoderRatio() *
kDrivetrainEncoderCountsPerRevolution();
}
static double DrivetrainEncoderToMeters(int32_t in) {
return ((static_cast<double>(in) /
kDrivetrainEncoderCountsPerRevolution()) *
(2.0 * M_PI)) *
kDrivetrainEncoderRatio() * control_loops::drivetrain::kWheelRadius;
}
// Climber
static constexpr ::frc971::constants::Range kClimberRange() {
return ::frc971::constants::Range{.lower_hard = -0.01,
.upper_hard = 0.59,
.lower = 0.003,
.upper = 0.555};
}
static constexpr double kClimberPotMetersPerRevolution() {
return 22 * 0.25 * 0.0254;
}
static constexpr double kClimberPotRatio() { return 1.0; }
static constexpr double kClimberPotMetersPerVolt() {
return kClimberPotRatio() * (5.0 /*turns*/ / 5.0 /*volts*/) *
kClimberPotMetersPerRevolution();
}
struct PotConstants {
::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemParams<
::frc971::zeroing::RelativeEncoderZeroingEstimator>
subsystem_params;
double potentiometer_offset;
};
PotConstants climber;
// Intake
// two encoders with same gear ratio for intake
static constexpr double kIntakeEncoderCountsPerRevolution() { return 4096.0; }
static constexpr double kIntakeEncoderRatio() {
return (16.0 / 64.0) * (18.0 / 62.0);
}
static constexpr double kIntakePotRatio() { return 16.0 / 64.0; }
static constexpr double kIntakePotRadiansPerVolt() {
return kIntakePotRatio() * (3.0 /*turns*/ / 5.0 /*volts*/) *
(2 * M_PI /*radians*/);
}
static constexpr double kMaxIntakeEncoderPulsesPerSecond() {
return control_loops::superstructure::intake::kFreeSpeed / (2.0 * M_PI) *
control_loops::superstructure::intake::kOutputRatio /
kIntakeEncoderRatio() * kIntakeEncoderCountsPerRevolution();
}
struct PotAndAbsEncoderConstants {
::frc971::control_loops::StaticZeroingSingleDOFProfiledSubsystemParams<
::frc971::zeroing::PotAndAbsoluteEncoderZeroingEstimator>
subsystem_params;
double potentiometer_offset;
};
PotAndAbsEncoderConstants intake_front;
PotAndAbsEncoderConstants intake_back;
// TODO (Yash): Constants need to be tuned
static constexpr ::frc971::constants::Range kIntakeRange() {
return ::frc971::constants::Range{
.lower_hard = -0.85, // Back Hard
.upper_hard = 1.85, // Front Hard
.lower = -0.400, // Back Soft
.upper = 1.57 // Front Soft
};
}
// Intake rollers
static constexpr double kIntakeRollerSupplyCurrentLimit() { return 40.0; }
static constexpr double kIntakeRollerStatorCurrentLimit() { return 60.0; }
// Transfer rollers
static constexpr double kTransferRollerVoltage() { return 12.0; }
// Voltage to wiggle the transfer rollers and keep a ball in.
static constexpr double kTransferRollerWiggleVoltage() { return 3.0; }
// Turret
PotAndAbsEncoderConstants turret;
frc971::constants::Range turret_range;
static constexpr double kTurretBackIntakePos() { return -M_PI; }
static constexpr double kTurretFrontIntakePos() { return 0; }
static constexpr double kTurretPotRatio() { return 27.0 / 110.0; }
static constexpr double kTurretPotRadiansPerVolt() {
return kTurretPotRatio() * (10.0 /*turns*/ / 5.0 /*volts*/) *
(2 * M_PI /*radians*/);
}
static constexpr double kTurretEncoderRatio() { return kTurretPotRatio(); }
static constexpr double kTurretEncoderCountsPerRevolution() { return 4096.0; }
static constexpr double kMaxTurretEncoderPulsesPerSecond() {
return control_loops::superstructure::turret::kFreeSpeed / (2.0 * M_PI) *
control_loops::superstructure::turret::kOutputRatio /
kTurretEncoderRatio() * kTurretEncoderCountsPerRevolution();
}
// Flipper arms
static constexpr double kFlipperArmSupplyCurrentLimit() { return 40.0; }
static constexpr double kFlipperArmStatorCurrentLimit() { return 60.0; }
// Voltage to open the flippers for firing
static constexpr double kFlipperOpenVoltage() { return 3.0; }
// Voltage to keep the flippers open for firing once they already are
static constexpr double kFlipperHoldVoltage() { return 2.5; }
// Voltage to feed a ball from the transfer rollers to the catpult with the
// flippers
static constexpr double kFlipperFeedVoltage() { return -12.0; }
// Ball is fed into catapult for atleast this time no matter what
static constexpr std::chrono::milliseconds kExtraLoadingTime() {
return std::chrono::milliseconds(100);
}
// If we have been trying to transfer the ball for this amount of time, it
// probably got lost so abort
static constexpr std::chrono::seconds kBallLostTime() {
return std::chrono::seconds(2);
}
// If the flippers took more than this amount of time to open for firing,
// reseat the ball
static constexpr std::chrono::milliseconds kFlipperOpeningTimeout() {
return std::chrono::milliseconds(1000);
}
// Don't use flipper velocity readings more than this amount of time in the
// past
static constexpr std::chrono::milliseconds kFlipperVelocityValidTime() {
return std::chrono::milliseconds(100);
}
// TODO: (Griffin) this needs to be set
static constexpr ::frc971::constants::Range kFlipperArmRange() {
return ::frc971::constants::Range{
.lower_hard = -0.01, .upper_hard = 0.4, .lower = 0.0, .upper = 0.5};
}
// Position of the flippers when they are open
static constexpr double kFlipperOpenPosition() { return 0.20; }
// If the flippers were open but now moved back, reseat the ball if they go
// below this position
static constexpr double kReseatFlipperPosition() { return 0.1; }
static constexpr double kFlipperArmsPotRatio() { return 16.0 / 36.0; }
static constexpr double kFlipperArmsPotRadiansPerVolt() {
return kFlipperArmsPotRatio() * (3.0 /*turns*/ / 5.0 /*volts*/) *
(2 * M_PI /*radians*/);
}
PotConstants flipper_arm_left;
PotConstants flipper_arm_right;
// Catapult.
static constexpr double kCatapultPotRatio() { return (12.0 / 33.0); }
static constexpr double kCatapultEncoderRatio() {
return kCatapultPotRatio();
}
static constexpr double kCatapultEncoderCountsPerRevolution() {
return 4096.0;
}
static constexpr double kMaxCatapultEncoderPulsesPerSecond() {
return control_loops::superstructure::catapult::kFreeSpeed / (2.0 * M_PI) *
control_loops::superstructure::catapult::kOutputRatio /
kCatapultEncoderRatio() * kCatapultEncoderCountsPerRevolution();
}
static constexpr ::frc971::constants::Range kCatapultRange() {
return ::frc971::constants::Range{
.lower_hard = -1.0,
.upper_hard = 2.0,
.lower = -0.91,
.upper = 1.57,
};
}
PotAndAbsEncoderConstants catapult;
// TODO(milind): set this
static constexpr double kImuHeight() { return 0.0; }
struct ShotParams {
// Measured in radians
double shot_angle;
// Muzzle velocity (m/s) of the ball as it is released from the catapult.
double shot_velocity;
static ShotParams BlendY(double coefficient, ShotParams a1, ShotParams a2) {
using ::frc971::shooter_interpolation::Blend;
return ShotParams{
.shot_angle = Blend(coefficient, a1.shot_angle, a2.shot_angle),
.shot_velocity =
Blend(coefficient, a1.shot_velocity, a2.shot_velocity),
};
}
};
struct ShotVelocityParams {
// Speed over ground to use for shooting-on-the-fly.
double shot_speed_over_ground;
static ShotVelocityParams BlendY(double coefficient, ShotVelocityParams a1,
ShotVelocityParams a2) {
using ::frc971::shooter_interpolation::Blend;
return ShotVelocityParams{Blend(coefficient, a1.shot_speed_over_ground,
a2.shot_speed_over_ground)};
}
};
InterpolationTable<ShotParams> shot_interpolation_table;
InterpolationTable<ShotVelocityParams> shot_velocity_interpolation_table;
struct BallColorParams {
// Rects stored as {x, y, width, height}
std::array<int, 4> reference_red;
std::array<int, 4> reference_blue;
std::array<int, 4> ball_location;
};
BallColorParams ball_color;
};
// Creates and returns a Values instance for the constants.
// Should be called before realtime because this allocates memory.
// Only the first call to either of these will be used.
Values MakeValues(uint16_t team);
// Calls MakeValues with aos::network::GetTeamNumber()
Values MakeValues();
} // namespace y2022::constants
#endif // Y2022_CONSTANTS_H_