blob: 951a2866f6138e1bbfb4915b6cf22f9ade2ea519 [file] [log] [blame]
#include "y2020/control_loops/drivetrain/localizer.h"
#include <queue>
#include "absl/flags/flag.h"
#include "gtest/gtest.h"
#include "aos/events/logging/log_writer.h"
#include "aos/network/message_bridge_server_generated.h"
#include "aos/network/team_number.h"
#include "frc971/control_loops/control_loop_test.h"
#include "frc971/control_loops/drivetrain/drivetrain.h"
#include "frc971/control_loops/drivetrain/drivetrain_test_lib.h"
#include "frc971/control_loops/team_number_test_environment.h"
#include "y2020/control_loops/drivetrain/drivetrain_base.h"
#include "y2020/control_loops/superstructure/superstructure_status_generated.h"
ABSL_FLAG(std::string, output_file, "",
"If set, logs all channels to the provided logfile.");
// This file tests that the full 2020 localizer behaves sanely.
namespace y2020::control_loops::drivetrain::testing {
using aos::logger::BootTimestamp;
using frc971::control_loops::drivetrain::DrivetrainConfig;
using frc971::control_loops::drivetrain::Goal;
using frc971::control_loops::drivetrain::LocalizerControl;
using frc971::vision::sift::CameraCalibrationT;
using frc971::vision::sift::CameraPoseT;
using frc971::vision::sift::ImageMatchResult;
using frc971::vision::sift::ImageMatchResultT;
using frc971::vision::sift::TransformationMatrixT;
namespace {
DrivetrainConfig<double> GetTest2020DrivetrainConfig() {
DrivetrainConfig<double> config = GetDrivetrainConfig();
return config;
}
// Copies an Eigen matrix into a row-major vector of the data.
std::vector<float> MatrixToVector(const Eigen::Matrix<double, 4, 4> &H) {
std::vector<float> data;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
data.push_back(H(row, col));
}
}
return data;
}
// Provides the location of the turret to use for simulation. Mostly we care
// about providing a location that is not perfectly aligned with the robot's
// origin.
Eigen::Matrix<double, 4, 4> TurretRobotTransformation() {
Eigen::Matrix<double, 4, 4> H;
H.setIdentity();
H.block<3, 1>(0, 3) << 1, 1.1, 0.9;
return H;
}
// Provides the location of the camera on the turret.
// TODO(james): Also simulate a fixed camera that is *not* on the turret.
Eigen::Matrix<double, 4, 4> CameraTurretTransformation() {
Eigen::Matrix<double, 4, 4> H;
H.setIdentity();
H.block<3, 1>(0, 3) << 0.1, 0, 0;
// Introduce a bit of pitch to make sure that we're exercising all the code.
H.block<3, 3>(0, 0) =
Eigen::AngleAxis<double>(0.1, Eigen::Vector3d::UnitY()) *
H.block<3, 3>(0, 0);
return H;
}
// The absolute target location to use. Not meant to correspond with a
// particular field target.
// TODO(james): Make more targets.
std::vector<Eigen::Matrix<double, 4, 4>> TargetLocations() {
std::vector<Eigen::Matrix<double, 4, 4>> locations;
Eigen::Matrix<double, 4, 4> H;
H.setIdentity();
H.block<3, 1>(0, 3) << 10.0, 0, 0;
locations.push_back(H);
H.block<3, 1>(0, 3) << -10.0, 0, 0;
H.block<3, 3>(0, 0) =
Eigen::AngleAxis<double>(1.1, Eigen::Vector3d::UnitZ()) *
H.block<3, 3>(0, 0);
locations.push_back(H);
return locations;
}
constexpr std::chrono::seconds kPiTimeOffset(10);
} // namespace
namespace chrono = std::chrono;
using aos::monotonic_clock;
using frc971::control_loops::drivetrain::DrivetrainLoop;
using frc971::control_loops::drivetrain::testing::DrivetrainSimulation;
class LocalizedDrivetrainTest : public frc971::testing::ControlLoopTest {
protected:
// We must use the 2020 drivetrain config so that we don't have to deal
// with shifting:
LocalizedDrivetrainTest()
: frc971::testing::ControlLoopTest(
aos::configuration::ReadConfig(
"y2020/control_loops/drivetrain/simulation_config.json"),
GetTest2020DrivetrainConfig().dt,
{{BootTimestamp::epoch() + kPiTimeOffset,
BootTimestamp::epoch() + kPiTimeOffset,
BootTimestamp::epoch() + kPiTimeOffset,
BootTimestamp::epoch() + kPiTimeOffset,
BootTimestamp::epoch() + kPiTimeOffset,
BootTimestamp::epoch() + kPiTimeOffset, BootTimestamp::epoch()}}),
roborio_(aos::configuration::GetNode(configuration(), "roborio")),
pi1_(aos::configuration::GetNode(configuration(), "pi1")),
drivetrain_event_loop_(MakeEventLoop("drivetrain", roborio_)),
dt_config_(GetTest2020DrivetrainConfig()),
pi1_event_loop_(MakeEventLoop("test", pi1_)),
camera_sender_(
pi1_event_loop_->MakeSender<ImageMatchResult>("/pi1/camera")),
localizer_(drivetrain_event_loop_.get(), dt_config_),
drivetrain_(dt_config_, drivetrain_event_loop_.get(), &localizer_),
drivetrain_plant_event_loop_(MakeEventLoop("plant", roborio_)),
drivetrain_plant_(drivetrain_plant_event_loop_.get(), dt_config_),
last_frame_(monotonic_now()),
test_event_loop_(MakeEventLoop("test", roborio_)),
drivetrain_goal_sender_(
test_event_loop_->MakeSender<Goal>("/drivetrain")),
drivetrain_goal_fetcher_(
test_event_loop_->MakeFetcher<Goal>("/drivetrain")),
drivetrain_status_fetcher_(
test_event_loop_
->MakeFetcher<frc971::control_loops::drivetrain::Status>(
"/drivetrain")),
localizer_control_sender_(
test_event_loop_->MakeSender<LocalizerControl>("/drivetrain")),
superstructure_status_sender_(
test_event_loop_->MakeSender<superstructure::Status>(
"/superstructure")),
server_statistics_sender_(
test_event_loop_->MakeSender<aos::message_bridge::ServerStatistics>(
"/aos")) {
CHECK_EQ(aos::configuration::GetNodeIndex(configuration(), roborio_), 6);
CHECK_EQ(aos::configuration::GetNodeIndex(configuration(), pi1_), 1);
set_team_id(frc971::control_loops::testing::kTeamNumber);
set_battery_voltage(12.0);
if (!absl::GetFlag(FLAGS_output_file).empty()) {
logger_event_loop_ = MakeEventLoop("logger", roborio_);
logger_ = std::make_unique<aos::logger::Logger>(logger_event_loop_.get());
logger_->StartLoggingOnRun(absl::GetFlag(FLAGS_output_file));
}
test_event_loop_->MakeWatcher(
"/drivetrain",
[this](const frc971::control_loops::drivetrain::Status &) {
// Needs to do camera updates right after we run the control loop.
if (enable_cameras_) {
SendDelayedFrames();
if (last_frame_ + std::chrono::milliseconds(100) <
monotonic_now()) {
CaptureFrames();
last_frame_ = monotonic_now();
}
}
});
test_event_loop_->AddPhasedLoop(
[this](int) {
// TODO(james): This is wrong. At a bare minimum, it is missing a boot
// UUID, and this is probably the wrong pattern entirely.
auto builder = server_statistics_sender_.MakeBuilder();
auto name_offset = builder.fbb()->CreateString("pi1");
auto node_builder = builder.MakeBuilder<aos::Node>();
node_builder.add_name(name_offset);
auto node_offset = node_builder.Finish();
auto connection_builder =
builder.MakeBuilder<aos::message_bridge::ServerConnection>();
connection_builder.add_node(node_offset);
connection_builder.add_monotonic_offset(
chrono::duration_cast<chrono::nanoseconds>(kPiTimeOffset)
.count());
auto connection_offset = connection_builder.Finish();
auto connections_offset =
builder.fbb()->CreateVector(&connection_offset, 1);
auto statistics_builder =
builder.MakeBuilder<aos::message_bridge::ServerStatistics>();
statistics_builder.add_connections(connections_offset);
CHECK_EQ(builder.Send(statistics_builder.Finish()),
aos::RawSender::Error::kOk);
},
chrono::milliseconds(500));
test_event_loop_->AddPhasedLoop(
[this](int) {
// Also use the opportunity to send out turret messages.
UpdateTurretPosition();
auto builder = superstructure_status_sender_.MakeBuilder();
auto turret_builder =
builder
.MakeBuilder<frc971::control_loops::
PotAndAbsoluteEncoderProfiledJointStatus>();
turret_builder.add_position(turret_position_);
turret_builder.add_velocity(turret_velocity_);
auto turret_offset = turret_builder.Finish();
auto status_builder = builder.MakeBuilder<superstructure::Status>();
status_builder.add_turret(turret_offset);
CHECK_EQ(builder.Send(status_builder.Finish()),
aos::RawSender::Error::kOk);
},
frc971::controls::kLoopFrequency);
test_event_loop_->OnRun([this]() { SetStartingPosition({3.0, 2.0, 0.0}); });
// Run for enough time to allow the gyro/imu zeroing code to run.
RunFor(std::chrono::seconds(15));
CHECK(drivetrain_status_fetcher_.Fetch());
CHECK(drivetrain_status_fetcher_->zeroing() != nullptr);
EXPECT_TRUE(drivetrain_status_fetcher_->zeroing()->zeroed());
}
virtual ~LocalizedDrivetrainTest() override {}
void SetStartingPosition(const Eigen::Matrix<double, 3, 1> &xytheta) {
*drivetrain_plant_.mutable_state() << xytheta.x(), xytheta.y(),
xytheta(2, 0), 0.0, 0.0;
Eigen::Matrix<double, Localizer::HybridEkf::kNStates, 1> localizer_state;
localizer_state.setZero();
localizer_state.block<3, 1>(0, 0) = xytheta;
localizer_.Reset(monotonic_now(), localizer_state);
}
void VerifyNearGoal(double eps = 1e-2) {
drivetrain_goal_fetcher_.Fetch();
EXPECT_NEAR(drivetrain_goal_fetcher_->left_goal(),
drivetrain_plant_.GetLeftPosition(), eps);
EXPECT_NEAR(drivetrain_goal_fetcher_->right_goal(),
drivetrain_plant_.GetRightPosition(), eps);
}
::testing::AssertionResult IsNear(double expected, double actual,
double epsilon) {
if (std::abs(expected - actual) < epsilon) {
return ::testing::AssertionSuccess();
} else {
return ::testing::AssertionFailure()
<< "Expected " << expected << " but got " << actual
<< " with a max difference of " << epsilon
<< " and an actual difference of " << std::abs(expected - actual);
}
}
::testing::AssertionResult VerifyEstimatorAccurate(double eps) {
const Eigen::Matrix<double, 5, 1> true_state = drivetrain_plant_.state();
::testing::AssertionResult result(true);
if (!(result = IsNear(localizer_.x(), true_state(0), eps))) {
return result;
}
if (!(result = IsNear(localizer_.y(), true_state(1), eps))) {
return result;
}
if (!(result = IsNear(localizer_.theta(), true_state(2), eps))) {
return result;
}
if (!(result = IsNear(localizer_.left_velocity(), true_state(3), eps))) {
return result;
}
if (!(result = IsNear(localizer_.right_velocity(), true_state(4), eps))) {
return result;
}
return result;
}
// Goes through and captures frames on the camera(s), queueing them up to be
// sent by SendDelayedFrames().
void CaptureFrames() {
const frc971::control_loops::Pose robot_pose(
{drivetrain_plant_.GetPosition().x(),
drivetrain_plant_.GetPosition().y(), 0.0},
drivetrain_plant_.state()(2, 0));
std::unique_ptr<ImageMatchResultT> frame(new ImageMatchResultT());
for (const auto &H_field_target : TargetLocations()) {
std::unique_ptr<CameraPoseT> camera_target(new CameraPoseT());
camera_target->field_to_target.reset(new TransformationMatrixT());
camera_target->field_to_target->data = MatrixToVector(H_field_target);
Eigen::Matrix<double, 4, 4> H_turret_camera =
Eigen::Matrix<double, 4, 4>::Identity();
if (is_turreted_) {
H_turret_camera = frc971::control_loops::TransformationMatrixForYaw(
turret_position_) *
CameraTurretTransformation();
}
// TODO(james): Use non-zero turret angles.
camera_target->camera_to_target.reset(new TransformationMatrixT());
camera_target->camera_to_target->data = MatrixToVector(
(robot_pose.AsTransformationMatrix() * TurretRobotTransformation() *
H_turret_camera * camera_calibration_offset_)
.inverse() *
H_field_target);
frame->camera_poses.emplace_back(std::move(camera_target));
}
frame->image_monotonic_timestamp_ns =
chrono::duration_cast<chrono::nanoseconds>(
event_loop_factory()
->GetNodeEventLoopFactory(pi1_)
->monotonic_now()
.time_since_epoch())
.count();
frame->camera_calibration.reset(new CameraCalibrationT());
{
frame->camera_calibration->fixed_extrinsics.reset(
new TransformationMatrixT());
TransformationMatrixT *H_robot_turret =
frame->camera_calibration->fixed_extrinsics.get();
H_robot_turret->data = MatrixToVector(TurretRobotTransformation());
}
if (is_turreted_) {
frame->camera_calibration->turret_extrinsics.reset(
new TransformationMatrixT());
TransformationMatrixT *H_turret_camera =
frame->camera_calibration->turret_extrinsics.get();
H_turret_camera->data = MatrixToVector(CameraTurretTransformation());
}
camera_delay_queue_.emplace(monotonic_now(), std::move(frame));
}
// Actually sends out all the camera frames.
void SendDelayedFrames() {
const std::chrono::milliseconds camera_latency(150);
while (!camera_delay_queue_.empty() &&
std::get<0>(camera_delay_queue_.front()) <
monotonic_now() - camera_latency) {
auto builder = camera_sender_.MakeBuilder();
ASSERT_EQ(
builder.Send(ImageMatchResult::Pack(
*builder.fbb(), std::get<1>(camera_delay_queue_.front()).get())),
aos::RawSender::Error::kOk);
camera_delay_queue_.pop();
}
}
const aos::Node *const roborio_;
const aos::Node *const pi1_;
std::unique_ptr<aos::EventLoop> drivetrain_event_loop_;
const frc971::control_loops::drivetrain::DrivetrainConfig<double> dt_config_;
std::unique_ptr<aos::EventLoop> pi1_event_loop_;
aos::Sender<ImageMatchResult> camera_sender_;
Localizer localizer_;
DrivetrainLoop drivetrain_;
std::unique_ptr<aos::EventLoop> drivetrain_plant_event_loop_;
DrivetrainSimulation drivetrain_plant_;
monotonic_clock::time_point last_frame_;
std::unique_ptr<aos::EventLoop> test_event_loop_;
aos::Sender<Goal> drivetrain_goal_sender_;
aos::Fetcher<Goal> drivetrain_goal_fetcher_;
aos::Fetcher<frc971::control_loops::drivetrain::Status>
drivetrain_status_fetcher_;
aos::Sender<LocalizerControl> localizer_control_sender_;
aos::Sender<superstructure::Status> superstructure_status_sender_;
aos::Sender<aos::message_bridge::ServerStatistics> server_statistics_sender_;
// A queue of camera frames so that we can add a time delay to the data
// coming from the cameras.
std::queue<std::tuple<aos::monotonic_clock::time_point,
std::unique_ptr<ImageMatchResultT>>>
camera_delay_queue_;
// Offset to add to the camera for actually taking the images, to simulate an
// inaccurate calibration.
Eigen::Matrix<double, 4, 4> camera_calibration_offset_ =
Eigen::Matrix<double, 4, 4>::Identity();
void set_enable_cameras(bool enable) { enable_cameras_ = enable; }
void set_camera_is_turreted(bool turreted) { is_turreted_ = turreted; }
void set_turret(double position, double velocity) {
turret_position_ = position;
turret_velocity_ = velocity;
}
void SendGoal(double left, double right) {
auto builder = drivetrain_goal_sender_.MakeBuilder();
Goal::Builder drivetrain_builder = builder.MakeBuilder<Goal>();
drivetrain_builder.add_controller_type(
frc971::control_loops::drivetrain::ControllerType::MOTION_PROFILE);
drivetrain_builder.add_left_goal(left);
drivetrain_builder.add_right_goal(right);
EXPECT_EQ(builder.Send(drivetrain_builder.Finish()),
aos::RawSender::Error::kOk);
}
private:
void UpdateTurretPosition() {
turret_position_ +=
turret_velocity_ *
aos::time::DurationInSeconds(monotonic_now() - last_turret_update_);
last_turret_update_ = monotonic_now();
}
bool enable_cameras_ = false;
// Whether to make the camera be on the turret or not.
bool is_turreted_ = true;
// The time at which we last incremented turret_position_.
monotonic_clock::time_point last_turret_update_ = monotonic_clock::min_time;
// Current turret position and velocity. These are set directly by the user in
// the test, and if velocity is non-zero, then we will automatically increment
// turret_position_ with every timestep.
double turret_position_ = 0.0; // rad
double turret_velocity_ = 0.0; // rad / sec
std::unique_ptr<aos::EventLoop> logger_event_loop_;
std::unique_ptr<aos::logger::Logger> logger_;
};
// Tests that no camera updates, combined with a perfect model, results in no
// error.
TEST_F(LocalizedDrivetrainTest, NoCameraUpdate) {
SetEnabled(true);
set_enable_cameras(false);
EXPECT_TRUE(VerifyEstimatorAccurate(1e-7));
SendGoal(-1.0, 1.0);
RunFor(chrono::seconds(10));
VerifyNearGoal();
EXPECT_TRUE(VerifyEstimatorAccurate(5e-3));
}
// Tests that we can drive in a straight line and have things estimate
// correctly.
TEST_F(LocalizedDrivetrainTest, NoCameraUpdateStraightLine) {
SetEnabled(true);
set_enable_cameras(false);
EXPECT_TRUE(VerifyEstimatorAccurate(1e-7));
SendGoal(1.0, 1.0);
RunFor(chrono::seconds(3));
VerifyNearGoal();
// Due to accelerometer drift, the straight-line driving tends to be less
// accurate...
EXPECT_TRUE(VerifyEstimatorAccurate(0.15));
}
// Tests that camera updates with a perfect models results in no errors.
TEST_F(LocalizedDrivetrainTest, PerfectCameraUpdate) {
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(true);
SendGoal(-1.0, 1.0);
RunFor(chrono::seconds(3));
VerifyNearGoal();
EXPECT_TRUE(VerifyEstimatorAccurate(2e-2));
}
// Tests that camera updates with a perfect model but incorrect camera pitch
// results in no errors.
TEST_F(LocalizedDrivetrainTest, PerfectCameraUpdateWithBadPitch) {
// Introduce some camera pitch.
camera_calibration_offset_.template block<3, 3>(0, 0) =
Eigen::AngleAxis<double>(0.1, Eigen::Vector3d::UnitY())
.toRotationMatrix();
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(true);
SendGoal(-1.0, 1.0);
RunFor(chrono::seconds(3));
VerifyNearGoal();
EXPECT_TRUE(VerifyEstimatorAccurate(2e-2));
}
// Tests that camera updates with a constant initial error in the position
// results in convergence.
TEST_F(LocalizedDrivetrainTest, InitialPositionError) {
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(true);
drivetrain_plant_.mutable_state()->topRows(3) +=
Eigen::Vector3d(0.1, 0.1, 0.01);
// Confirm that some translational movement does get handled correctly.
SendGoal(-0.9, 1.0);
// Give the filters enough time to converge.
RunFor(chrono::seconds(10));
VerifyNearGoal(5e-2);
EXPECT_TRUE(VerifyEstimatorAccurate(4e-2));
}
// Tests that camera updates using a non-turreted camera work.
TEST_F(LocalizedDrivetrainTest, InitialPositionErrorNoTurret) {
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(false);
drivetrain_plant_.mutable_state()->topRows(3) +=
Eigen::Vector3d(0.1, 0.1, 0.01);
SendGoal(-1.0, 1.0);
// Give the filters enough time to converge.
RunFor(chrono::seconds(10));
VerifyNearGoal(5e-2);
EXPECT_TRUE(VerifyEstimatorAccurate(0.1));
}
// Tests that we are able to handle a constant, non-zero turret angle.
TEST_F(LocalizedDrivetrainTest, NonZeroTurret) {
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(true);
set_turret(1.0, 0.0);
drivetrain_plant_.mutable_state()->topRows(3) +=
Eigen::Vector3d(0.1, 0.1, 0.0);
SendGoal(-1.0, 1.0);
// Give the filters enough time to converge.
RunFor(chrono::seconds(10));
VerifyNearGoal(5e-2);
EXPECT_TRUE(VerifyEstimatorAccurate(1e-2));
}
// Tests that we are able to handle a constant velocity turret.
TEST_F(LocalizedDrivetrainTest, MovingTurret) {
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(true);
set_turret(0.0, 0.2);
drivetrain_plant_.mutable_state()->topRows(3) +=
Eigen::Vector3d(0.1, 0.1, 0.0);
SendGoal(-1.0, 1.0);
// Give the filters enough time to converge.
RunFor(chrono::seconds(10));
VerifyNearGoal(5e-2);
EXPECT_TRUE(VerifyEstimatorAccurate(1e-1));
}
// Tests that we reject camera measurements when the turret is spinning too
// fast.
TEST_F(LocalizedDrivetrainTest, TooFastTurret) {
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(true);
set_turret(0.0, -10.0);
const Eigen::Vector3d disturbance(0.1, 0.1, 0.0);
drivetrain_plant_.mutable_state()->topRows(3) += disturbance;
SendGoal(-1.0, 1.0);
RunFor(chrono::seconds(10));
EXPECT_FALSE(VerifyEstimatorAccurate(1e-3));
// If we remove the disturbance, we should now be correct.
drivetrain_plant_.mutable_state()->topRows(3) -= disturbance;
VerifyNearGoal(5e-2);
EXPECT_TRUE(VerifyEstimatorAccurate(2e-2));
}
// Tests that we don't reject camera measurements when the turret is spinning
// too fast but we aren't using a camera attached to the turret.
TEST_F(LocalizedDrivetrainTest, TooFastTurretDoesntAffectFixedCamera) {
SetEnabled(true);
set_enable_cameras(true);
set_camera_is_turreted(false);
set_turret(0.0, -10.0);
const Eigen::Vector3d disturbance(0.1, 0.1, 0.0);
drivetrain_plant_.mutable_state()->topRows(3) += disturbance;
SendGoal(-1.0, 1.0);
RunFor(chrono::seconds(10));
VerifyNearGoal(5e-3);
EXPECT_TRUE(VerifyEstimatorAccurate(1e-1));
}
// Tests that we don't blow up if we stop getting updates for an extended period
// of time and fall behind on fetching fron the cameras.
TEST_F(LocalizedDrivetrainTest, FetchersHandleTimeGap) {
std::unique_ptr<aos::EventLoop> test = MakeEventLoop("test", roborio_);
set_enable_cameras(false);
set_send_delay(std::chrono::seconds(0));
event_loop_factory()->set_network_delay(std::chrono::nanoseconds(1));
test->AddTimer([this]() { drivetrain_plant_.set_send_messages(false); })
->Schedule(test->monotonic_now());
test->AddPhasedLoop(
[this](int) {
auto builder = camera_sender_.MakeBuilder();
ImageMatchResultT image;
ASSERT_EQ(builder.Send(ImageMatchResult::Pack(*builder.fbb(), &image)),
aos::RawSender::Error::kOk);
},
std::chrono::milliseconds(40));
test->AddTimer([this]() {
drivetrain_plant_.set_send_messages(true);
SimulateSensorReset();
})
->Schedule(test->monotonic_now() + std::chrono::seconds(10));
RunFor(chrono::seconds(20));
}
} // namespace y2020::control_loops::drivetrain::testing