blob: bc12fd69cd905022267148983e003a3e597c9f85 [file] [log] [blame]
#ifndef Y2020_CONTROL_LOOPS_DRIVETRAIN_LOCALIZER_H_
#define Y2020_CONTROL_LOOPS_DRIVETRAIN_LOCALIZER_H_
#include <string_view>
#include "aos/containers/ring_buffer.h"
#include "aos/containers/sized_array.h"
#include "aos/events/event_loop.h"
#include "aos/network/message_bridge_server_generated.h"
#include "frc971/control_loops/drivetrain/hybrid_ekf.h"
#include "frc971/control_loops/drivetrain/localizer.h"
#include "y2020/control_loops/drivetrain/localizer_debug_generated.h"
#include "y2020/control_loops/superstructure/superstructure_status_generated.h"
#include "y2020/vision/sift/sift_generated.h"
namespace y2020::control_loops::drivetrain {
// This class handles the localization for the 2020 robot. In order to handle
// camera updates, we get the ImageMatchResult message from the cameras and then
// project the result onto the 2-D X/Y plane and use the implied robot
// position/heading from that as the measurement. This is distinct from 2019,
// when we used a heading/distance/skew measurement update. This is because
// updating with x/y/theta directly seems to be better conditioned (even if it
// may not reflect the measurement noise quite as accurately). The poor
// conditioning seemed to work in 2019, but due to the addition of a couple of
// velocity offset states that allow us to use the accelerometer more
// effectively, things started to become unstable.
class Localizer : public frc971::control_loops::drivetrain::LocalizerInterface {
public:
typedef frc971::control_loops::TypedPose<float> Pose;
typedef frc971::control_loops::drivetrain::HybridEkf<float> HybridEkf;
typedef typename HybridEkf::State State;
typedef typename HybridEkf::StateIdx StateIdx;
typedef typename HybridEkf::StateSquare StateSquare;
typedef typename HybridEkf::Input Input;
typedef typename HybridEkf::Output Output;
Localizer(aos::EventLoop *event_loop,
const frc971::control_loops::drivetrain::DrivetrainConfig<double>
&dt_config);
frc971::control_loops::drivetrain::HybridEkf<double>::State Xhat()
const override {
return ekf_.X_hat().cast<double>();
}
frc971::control_loops::drivetrain::TrivialTargetSelector *target_selector()
override {
return &target_selector_;
}
void Update(const ::Eigen::Matrix<double, 2, 1> &U,
aos::monotonic_clock::time_point now, double left_encoder,
double right_encoder, double gyro_rate,
const Eigen::Vector3d &accel) override;
void Reset(aos::monotonic_clock::time_point t,
const frc971::control_loops::drivetrain::HybridEkf<double>::State
&state) override;
void ResetPosition(aos::monotonic_clock::time_point t, double x, double y,
double theta, double /*theta_override*/,
bool /*reset_theta*/) override {
const double left_encoder = ekf_.X_hat(StateIdx::kLeftEncoder);
const double right_encoder = ekf_.X_hat(StateIdx::kRightEncoder);
ekf_.ResetInitialState(t,
(HybridEkf::State() << x, y, theta, left_encoder, 0,
right_encoder, 0, 0, 0, 0, 0, 0)
.finished(),
ekf_.P());
}
private:
// Storage for a single turret position data point.
struct TurretData {
aos::monotonic_clock::time_point receive_time =
aos::monotonic_clock::min_time;
double position = 0.0; // rad
double velocity = 0.0; // rad/sec
};
static constexpr size_t kNumRejectionReasons =
static_cast<int>(RejectionReason::MAX) -
static_cast<int>(RejectionReason::MIN) + 1;
struct Statistics {
int total_accepted = 0;
int total_candidates = 0;
static_assert(0 == static_cast<int>(RejectionReason::MIN));
static_assert(
kNumRejectionReasons ==
sizeof(
std::invoke_result<decltype(EnumValuesRejectionReason)>::type) /
sizeof(RejectionReason),
"RejectionReason has non-contiguous error values.");
std::array<int, kNumRejectionReasons> rejection_counts;
};
class Corrector : public HybridEkf::ExpectedObservationFunctor {
public:
Corrector(const Eigen::Matrix<float, 4, 4> &H_field_target,
const Pose &pose_robot_target, const State &state_at_capture,
const Eigen::Vector3f &Z,
std::optional<RejectionReason> *correction_rejection)
: H_field_target_(H_field_target),
pose_robot_target_(pose_robot_target),
state_at_capture_(state_at_capture),
Z_(Z),
correction_rejection_(correction_rejection) {
H_.setZero();
H_(0, StateIdx::kX) = 1;
H_(1, StateIdx::kY) = 1;
H_(2, StateIdx::kTheta) = 1;
}
Output H(const State &, const Input &) final;
Eigen::Matrix<float, HybridEkf::kNOutputs, HybridEkf::kNStates> DHDX(
const State &) final {
return H_;
}
private:
Eigen::Matrix<float, HybridEkf::kNOutputs, HybridEkf::kNStates> H_;
const Eigen::Matrix<float, 4, 4> H_field_target_;
Pose pose_robot_target_;
const State state_at_capture_;
const Eigen::Vector3f &Z_;
std::optional<RejectionReason> *correction_rejection_;
};
// Processes new image data from the given pi and updates the EKF.
aos::SizedArray<flatbuffers::Offset<ImageMatchDebug>, 5> HandleImageMatch(
size_t camera_index, std::string_view pi,
const frc971::vision::sift::ImageMatchResult &result,
aos::monotonic_clock::time_point now,
flatbuffers::FlatBufferBuilder *fbb);
// Processes the most recent turret position and stores it in the turret_data_
// buffer.
void HandleSuperstructureStatus(
const y2020::control_loops::superstructure::Status &status);
// Retrieves the turret data closest to the provided time.
TurretData GetTurretDataForTime(aos::monotonic_clock::time_point time);
aos::EventLoop *const event_loop_;
const frc971::control_loops::drivetrain::DrivetrainConfig<double> dt_config_;
HybridEkf ekf_;
HybridEkf::ExpectedObservationAllocator<Corrector> observations_;
std::vector<aos::Fetcher<frc971::vision::sift::ImageMatchResult>>
image_fetchers_;
aos::Fetcher<aos::message_bridge::ServerStatistics> clock_offset_fetcher_;
aos::Sender<y2020::control_loops::drivetrain::LocalizerDebug> debug_sender_;
// Buffer of recent turret data--this is used so that when we receive a camera
// frame from the turret, we can back out what the turret angle was at that
// time.
aos::RingBuffer<TurretData, 200> turret_data_;
// Target selector to allow us to satisfy the LocalizerInterface requirements.
frc971::control_loops::drivetrain::TrivialTargetSelector target_selector_;
Statistics statistics_;
};
} // namespace y2020::control_loops::drivetrain
#endif // Y2020_CONTROL_LOOPS_DRIVETRAIN_LOCALIZER_H_