blob: f8518f38faac428c736e04066381c92c592289a0 [file] [log] [blame]
#include "y2020/control_loops/drivetrain/localizer.h"
#include "absl/flags/flag.h"
#include "y2020/constants.h"
ABSL_FLAG(bool, send_empty_debug, false,
"If true, send LocalizerDebug messages on every tick, even if "
"they would be empty.");
namespace y2020::control_loops::drivetrain {
namespace {
// Converts a flatbuffer TransformationMatrix to an Eigen matrix. Technically,
// this should be able to do a single memcpy, but the extra verbosity here seems
// appropriate.
Eigen::Matrix<float, 4, 4> FlatbufferToTransformationMatrix(
const frc971::vision::sift::TransformationMatrix &flatbuffer) {
CHECK(flatbuffer.data() != nullptr);
CHECK_EQ(16u, flatbuffer.data()->size());
Eigen::Matrix<float, 4, 4> result;
result.setIdentity();
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
result(row, col) = (*flatbuffer.data())[row * 4 + col];
}
}
return result;
}
// Offset to add to the pi's yaw in its extrinsics, to account for issues in the
// calibrated extrinsics.
constexpr double kTurretPiOffset = 0.0;
// Indices of the pis to use.
const std::array<std::string, 5> kPisToUse{"pi1", "pi2", "pi3", "pi4", "pi5"};
float CalculateYaw(const Eigen::Matrix4f &transform) {
const Eigen::Vector2f yaw_coords =
(transform * Eigen::Vector4f(1, 0, 0, 0)).topRows<2>();
return std::atan2(yaw_coords(1), yaw_coords(0));
}
// Calculates the pose implied by the camera target, just based on
// distance/heading components.
Eigen::Vector3f CalculateImpliedPose(const float correction_robot_theta,
const Eigen::Matrix4f &H_field_target,
const Localizer::Pose &pose_robot_target) {
// This code overrides the pose sent directly from the camera code and
// effectively distills it down to just a distance + heading estimate, on
// the presumption that these signals will tend to be much lower noise and
// better-conditioned than other portions of the robot pose.
// As such, this code assumes that the provided estimate of the robot
// heading is correct and then, given the heading from the camera to the
// target and the distance from the camera to the target, calculates the
// position that the robot would have to be at to make the current camera
// heading + distance correct. This X/Y implied robot position is then
// used as the measurement in the EKF, rather than the X/Y that is
// directly returned from the vision processing. If the provided
// correction_robot_theta is exactly identical to the current estimated robot
// yaw, then this means that the image corrections will not do anything to
// correct gyro drift; however, by making that tradeoff we can prioritize
// getting the turret angle to the target correct (without adding any new
// non-linearities to the EKF itself).
// Calculate the heading to the robot in the target's coordinate frame.
// Reminder on what the numbers mean:
// rel_theta: The orientation of the target in the robot frame.
// heading: heading from the robot to the target in the robot frame. I.e.,
// atan2(y, x) for x/y of the target in the robot frame.
const float implied_rel_theta =
CalculateYaw(H_field_target) - correction_robot_theta;
const float implied_heading_from_target = aos::math::NormalizeAngle(
M_PI - implied_rel_theta + pose_robot_target.heading());
const float implied_distance = pose_robot_target.xy_norm();
const Eigen::Vector4f robot_pose_in_target_frame(
implied_distance * std::cos(implied_heading_from_target),
implied_distance * std::sin(implied_heading_from_target), 0, 1);
const Eigen::Vector2f implied_xy =
(H_field_target * robot_pose_in_target_frame).topRows<2>();
return {implied_xy.x(), implied_xy.y(), correction_robot_theta};
}
} // namespace
Localizer::Localizer(
aos::EventLoop *event_loop,
const frc971::control_loops::drivetrain::DrivetrainConfig<double>
&dt_config)
: event_loop_(event_loop),
dt_config_(dt_config),
ekf_(dt_config),
observations_(&ekf_),
clock_offset_fetcher_(
event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>(
"/aos")),
debug_sender_(
event_loop_
->MakeSender<y2020::control_loops::drivetrain::LocalizerDebug>(
"/drivetrain")) {
statistics_.rejection_counts.fill(0);
// TODO(james): The down estimator has trouble handling situations where the
// robot is constantly wiggling but not actually moving much, and can cause
// drift when using accelerometer readings.
ekf_.set_ignore_accel(true);
// TODO(james): This doesn't really need to be a watcher; we could just use a
// fetcher for the superstructure status.
// This probably should be a Fetcher instead of a Watcher, but this
// seems simpler for the time being (although technically it should be
// possible to do everything we need to using just a Fetcher without
// even maintaining a separate buffer, but that seems overly cute).
event_loop_->MakeWatcher("/superstructure",
[this](const superstructure::Status &status) {
HandleSuperstructureStatus(status);
});
event_loop->OnRun([this, event_loop]() {
ekf_.ResetInitialState(event_loop->monotonic_now(),
HybridEkf::State::Zero(), ekf_.P());
});
for (const auto &pi : kPisToUse) {
image_fetchers_.emplace_back(
event_loop_->MakeFetcher<frc971::vision::sift::ImageMatchResult>(
"/" + pi + "/camera"));
}
target_selector_.set_has_target(false);
}
void Localizer::Reset(
aos::monotonic_clock::time_point t,
const frc971::control_loops::drivetrain::HybridEkf<double>::State &state) {
// Go through and clear out all of the fetchers so that we don't get behind.
for (auto &fetcher : image_fetchers_) {
fetcher.Fetch();
}
ekf_.ResetInitialState(t, state.cast<float>(), ekf_.P());
}
void Localizer::HandleSuperstructureStatus(
const y2020::control_loops::superstructure::Status &status) {
CHECK(status.has_turret());
turret_data_.Push({event_loop_->monotonic_now(), status.turret()->position(),
status.turret()->velocity()});
}
Localizer::TurretData Localizer::GetTurretDataForTime(
aos::monotonic_clock::time_point time) {
if (turret_data_.empty()) {
return {};
}
aos::monotonic_clock::duration lowest_time_error =
aos::monotonic_clock::duration::max();
TurretData best_data_match;
for (const auto &sample : turret_data_) {
const aos::monotonic_clock::duration time_error =
std::chrono::abs(sample.receive_time - time);
if (time_error < lowest_time_error) {
lowest_time_error = time_error;
best_data_match = sample;
}
}
return best_data_match;
}
void Localizer::Update(const Eigen::Matrix<double, 2, 1> &U,
aos::monotonic_clock::time_point now,
double left_encoder, double right_encoder,
double gyro_rate, const Eigen::Vector3d &accel) {
ekf_.UpdateEncodersAndGyro(left_encoder, right_encoder, gyro_rate,
U.cast<float>(), accel.cast<float>(), now);
auto builder = debug_sender_.MakeBuilder();
aos::SizedArray<flatbuffers::Offset<ImageMatchDebug>, 25> debug_offsets;
for (size_t ii = 0; ii < kPisToUse.size(); ++ii) {
auto &image_fetcher = image_fetchers_[ii];
while (image_fetcher.FetchNext()) {
const auto offsets = HandleImageMatch(ii, kPisToUse[ii], *image_fetcher,
now, builder.fbb());
for (const auto offset : offsets) {
debug_offsets.push_back(offset);
}
}
}
if (absl::GetFlag(FLAGS_send_empty_debug) || !debug_offsets.empty()) {
const auto vector_offset =
builder.fbb()->CreateVector(debug_offsets.data(), debug_offsets.size());
const auto rejections_offset =
builder.fbb()->CreateVector(statistics_.rejection_counts.data(),
statistics_.rejection_counts.size());
CumulativeStatistics::Builder stats_builder =
builder.MakeBuilder<CumulativeStatistics>();
stats_builder.add_total_accepted(statistics_.total_accepted);
stats_builder.add_total_candidates(statistics_.total_candidates);
stats_builder.add_rejection_reason_count(rejections_offset);
const auto stats_offset = stats_builder.Finish();
LocalizerDebug::Builder debug_builder =
builder.MakeBuilder<LocalizerDebug>();
debug_builder.add_matches(vector_offset);
debug_builder.add_statistics(stats_offset);
builder.CheckOk(builder.Send(debug_builder.Finish()));
}
}
aos::SizedArray<flatbuffers::Offset<ImageMatchDebug>, 5>
Localizer::HandleImageMatch(
size_t camera_index, std::string_view pi,
const frc971::vision::sift::ImageMatchResult &result,
aos::monotonic_clock::time_point now, flatbuffers::FlatBufferBuilder *fbb) {
aos::SizedArray<flatbuffers::Offset<ImageMatchDebug>, 5> debug_offsets;
std::chrono::nanoseconds monotonic_offset{0};
bool message_bridge_connected = true;
clock_offset_fetcher_.Fetch();
if (clock_offset_fetcher_.get() != nullptr) {
for (const auto connection : *clock_offset_fetcher_->connections()) {
if (connection->has_node() && connection->node()->has_name() &&
connection->node()->name()->string_view() == pi) {
if (connection->has_monotonic_offset()) {
monotonic_offset =
std::chrono::nanoseconds(connection->monotonic_offset());
} else {
// If we don't have a monotonic offset, that means we aren't
// connected, in which case we should break the loop but shouldn't
// populate the offset.
message_bridge_connected = false;
}
break;
}
}
}
aos::monotonic_clock::time_point capture_time(
std::chrono::nanoseconds(result.image_monotonic_timestamp_ns()) -
monotonic_offset);
VLOG(1) << "Got monotonic offset of "
<< aos::time::DurationInSeconds(monotonic_offset)
<< " when at time of " << now << " and capture time estimate of "
<< capture_time;
std::optional<RejectionReason> rejection_reason;
if (!message_bridge_connected) {
rejection_reason = RejectionReason::MESSAGE_BRIDGE_DISCONNECTED;
} else if (capture_time > now) {
rejection_reason = RejectionReason::IMAGE_FROM_FUTURE;
}
if (!result.has_camera_calibration()) {
AOS_LOG(WARNING, "Got camera frame without calibration data.\n");
ImageMatchDebug::Builder builder(*fbb);
builder.add_camera(camera_index);
builder.add_accepted(false);
builder.add_rejection_reason(RejectionReason::NO_CALIBRATION);
debug_offsets.push_back(builder.Finish());
statistics_.rejection_counts[static_cast<size_t>(
RejectionReason::NO_CALIBRATION)]++;
return debug_offsets;
}
// Per the ImageMatchResult specification, we can actually determine whether
// the camera is the turret camera just from the presence of the
// turret_extrinsics member.
const bool is_turret = result.camera_calibration()->has_turret_extrinsics();
const TurretData turret_data = GetTurretDataForTime(capture_time);
// Ignore readings when the turret is spinning too fast, on the assumption
// that the odds of screwing up the time compensation are higher.
// Note that the current number here is chosen pretty arbitrarily--1 rad / sec
// seems reasonable, but may be unnecessarily low or high.
constexpr float kMaxTurretVelocity = 1.0;
if (is_turret && std::abs(turret_data.velocity) > kMaxTurretVelocity &&
!rejection_reason) {
rejection_reason = RejectionReason::TURRET_TOO_FAST;
}
CHECK(result.camera_calibration()->has_fixed_extrinsics());
const Eigen::Matrix<float, 4, 4> fixed_extrinsics =
FlatbufferToTransformationMatrix(
*result.camera_calibration()->fixed_extrinsics());
// Calculate the pose of the camera relative to the robot origin.
Eigen::Matrix<float, 4, 4> H_robot_camera = fixed_extrinsics;
if (is_turret) {
H_robot_camera = H_robot_camera *
frc971::control_loops::TransformationMatrixForYaw<float>(
turret_data.position + kTurretPiOffset) *
FlatbufferToTransformationMatrix(
*result.camera_calibration()->turret_extrinsics());
}
if (!result.has_camera_poses()) {
ImageMatchDebug::Builder builder(*fbb);
builder.add_camera(camera_index);
builder.add_accepted(false);
builder.add_rejection_reason(RejectionReason::NO_RESULTS);
debug_offsets.push_back(builder.Finish());
statistics_
.rejection_counts[static_cast<size_t>(RejectionReason::NO_RESULTS)]++;
return debug_offsets;
}
int index = -1;
for (const frc971::vision::sift::CameraPose *vision_result :
*result.camera_poses()) {
++statistics_.total_candidates;
++index;
ImageMatchDebug::Builder builder(*fbb);
builder.add_camera(camera_index);
builder.add_pose_index(index);
builder.add_local_image_capture_time_ns(
result.image_monotonic_timestamp_ns());
builder.add_roborio_image_capture_time_ns(
capture_time.time_since_epoch().count());
builder.add_image_age_sec(aos::time::DurationInSeconds(now - capture_time));
if (!vision_result->has_camera_to_target() ||
!vision_result->has_field_to_target()) {
builder.add_accepted(false);
builder.add_rejection_reason(RejectionReason::NO_TRANSFORMS);
statistics_.rejection_counts[static_cast<size_t>(
RejectionReason::NO_TRANSFORMS)]++;
debug_offsets.push_back(builder.Finish());
continue;
}
const Eigen::Matrix<float, 4, 4> H_camera_target =
FlatbufferToTransformationMatrix(*vision_result->camera_to_target());
const Eigen::Matrix<float, 4, 4> H_field_target =
FlatbufferToTransformationMatrix(*vision_result->field_to_target());
const Eigen::Matrix<float, 4, 4> H_field_camera =
H_field_target * H_camera_target.inverse();
// Back out the robot position that is implied by the current camera
// reading. Note that the Pose object ignores any roll/pitch components, so
// if the camera's extrinsics for pitch/roll are off, this should just
// ignore it.
const Pose measured_camera_pose(H_field_camera);
builder.add_camera_x(measured_camera_pose.rel_pos().x());
builder.add_camera_y(measured_camera_pose.rel_pos().y());
// Because the camera uses Z as forwards rather than X, just calculate the
// debugging theta value using the transformation matrix directly (note that
// the rest of this file deliberately does not care what convention the
// camera uses, since that is encoded in the extrinsics themselves).
builder.add_camera_theta(
std::atan2(H_field_camera(1, 2), H_field_camera(0, 2)));
// Calculate the camera-to-robot transformation matrix ignoring the
// pitch/roll of the camera.
// TODO(james): This could probably be made a bit more efficient, but I
// don't think this is anywhere near our bottleneck currently.
const Eigen::Matrix<float, 4, 4> H_camera_robot_stripped =
Pose(H_robot_camera).AsTransformationMatrix().inverse();
const Pose measured_pose(measured_camera_pose.AsTransformationMatrix() *
H_camera_robot_stripped);
// This "Z" is the robot pose directly implied by the camera results.
// Currently, we do not actually use this result directly. However, it is
// kept around in case we want to quickly re-enable it.
const Eigen::Matrix<float, 3, 1> Z(measured_pose.rel_pos().x(),
measured_pose.rel_pos().y(),
measured_pose.rel_theta());
builder.add_implied_robot_x(Z(0));
builder.add_implied_robot_y(Z(1));
builder.add_implied_robot_theta(Z(2));
// Pose of the target in the robot frame.
// Note that we use measured_pose's transformation matrix rather than just
// doing H_robot_camera * H_camera_target because measured_pose ignores
// pitch/roll.
Pose pose_robot_target(measured_pose.AsTransformationMatrix().inverse() *
H_field_target);
// Turret is zero when pointed backwards.
builder.add_implied_turret_goal(
aos::math::NormalizeAngle(M_PI + pose_robot_target.heading()));
// Since we've now built up all the information that is useful to include in
// the debug message, bail if we have reason to do so.
if (rejection_reason) {
builder.add_rejection_reason(*rejection_reason);
statistics_.rejection_counts[static_cast<size_t>(*rejection_reason)]++;
builder.add_accepted(false);
debug_offsets.push_back(builder.Finish());
continue;
}
// TODO(james): Figure out how to properly handle calculating the
// noise. Currently, the values are deliberately tuned so that image updates
// will not be trusted overly much. In theory, we should probably also be
// populating some cross-correlation terms.
// Note that these are the noise standard deviations (they are squared below
// to get variances).
Eigen::Matrix<float, 3, 1> noises(2.0, 2.0, 0.5);
// Augment the noise by the approximate rotational speed of the
// camera. This should help account for the fact that, while we are
// spinning, slight timing errors in the camera/turret data will tend to
// have mutch more drastic effects on the results.
noises *= 1.0 + std::abs((right_velocity() - left_velocity()) /
(2.0 * dt_config_.robot_radius) +
(is_turret ? turret_data.velocity : 0.0));
// Pay less attention to cameras that aren't actually on the turret, since
// they are less useful when it comes to actually making shots.
if (!is_turret) {
noises *= 3.0;
} else {
noises /= 5.0;
}
Eigen::Matrix3f R = Eigen::Matrix3f::Zero();
R.diagonal() = noises.cwiseAbs2();
VLOG(1) << "Pose implied by target: " << Z.transpose()
<< " and current pose " << x() << ", " << y() << ", " << theta()
<< " Heading/dist/skew implied by target: "
<< pose_robot_target.ToHeadingDistanceSkew().transpose();
// If the heading is off by too much, assume that we got a false-positive
// and don't use the correction.
if (std::abs(aos::math::DiffAngle<float>(theta(), Z(2))) > M_PI_2) {
AOS_LOG(WARNING, "Dropped image match due to heading mismatch.\n");
builder.add_accepted(false);
builder.add_rejection_reason(RejectionReason::HIGH_THETA_DIFFERENCE);
statistics_.rejection_counts[static_cast<size_t>(
RejectionReason::HIGH_THETA_DIFFERENCE)]++;
debug_offsets.push_back(builder.Finish());
continue;
}
// In order to do the EKF correction, we determine the expected state based
// on the state at the time the image was captured; however, we insert the
// correction update itself at the current time. This is technically not
// quite correct, but saves substantial CPU usage by making it so that we
// don't have to constantly rewind the entire EKF history.
const std::optional<State> state_at_capture =
ekf_.LastStateBeforeTime(capture_time);
if (!state_at_capture.has_value()) {
AOS_LOG(WARNING, "Dropped image match due to age of image.\n");
builder.add_accepted(false);
builder.add_rejection_reason(RejectionReason::IMAGE_TOO_OLD);
statistics_.rejection_counts[static_cast<size_t>(
RejectionReason::IMAGE_TOO_OLD)]++;
debug_offsets.push_back(builder.Finish());
continue;
}
std::optional<RejectionReason> correction_rejection;
const Input U = ekf_.MostRecentInput();
// For the correction step, instead of passing in the measurement directly,
// we pass in (0, 0, 0) as the measurement and then for the expected
// measurement (Zhat) we calculate the error between the implied and actual
// poses. This doesn't affect any of the math, it just makes the code a bit
// more convenient to write given the Correct() interface we already have.
// Note: If we start going back to doing back-in-time rewinds, then we can't
// get away with passing things by reference.
observations_.CorrectKnownH(
Eigen::Vector3f::Zero(), &U,
Corrector(H_field_target, pose_robot_target, state_at_capture.value(),
Z, &correction_rejection),
R, now);
if (correction_rejection) {
builder.add_accepted(false);
builder.add_rejection_reason(*correction_rejection);
statistics_
.rejection_counts[static_cast<size_t>(*correction_rejection)]++;
} else {
builder.add_accepted(true);
statistics_.total_accepted++;
}
debug_offsets.push_back(builder.Finish());
}
return debug_offsets;
}
Localizer::Output Localizer::Corrector::H(const State &, const Input &) {
// Weighting for how much to use the current robot heading estimate
// vs. the heading estimate from the image results. A value of 1.0
// completely ignores the measured heading, but will prioritize turret
// aiming above all else. A value of 0.0 will prioritize correcting
// any gyro heading drift.
constexpr float kImpliedWeight = 0.99;
const float z_yaw_diff = aos::math::NormalizeAngle(
state_at_capture_(Localizer::StateIdx::kTheta) - Z_(2));
const float z_yaw = Z_(2) + kImpliedWeight * z_yaw_diff;
const Eigen::Vector3f Z_implied =
CalculateImpliedPose(z_yaw, H_field_target_, pose_robot_target_);
const Eigen::Vector3f Z_used = Z_implied;
// Just in case we ever do encounter any, drop measurements if they
// have non-finite numbers.
if (!Z_.allFinite()) {
AOS_LOG(WARNING, "Got measurement with infinites or NaNs.\n");
*correction_rejection_ = RejectionReason::NONFINITE_MEASUREMENT;
return Eigen::Vector3f::Zero();
}
Eigen::Vector3f Zhat = H_ * state_at_capture_ - Z_used;
// Rewrap angle difference to put it back in range. Note that this
// component of the error is currently ignored (see definition of H
// above).
Zhat(2) = aos::math::NormalizeAngle(Zhat(2));
// If the measurement implies that we are too far from the current
// estimate, then ignore it.
// Note that I am not entirely sure how much effect this actually has,
// because I primarily introduced it to make sure that any grossly
// invalid measurements get thrown out.
if (Zhat.squaredNorm() > std::pow(10.0, 2)) {
*correction_rejection_ = RejectionReason::CORRECTION_TOO_LARGE;
return Eigen::Vector3f::Zero();
}
return Zhat;
}
} // namespace y2020::control_loops::drivetrain