| Least-squares |
| ============= |
| |
| Consider the following constrained least-squares problem |
| |
| .. math:: |
| \begin{array}{ll} |
| \mbox{minimize} & \frac{1}{2} \|Ax - b\|_2^2 \\ |
| \mbox{subject to} & 0 \leq x \leq 1 |
| \end{array} |
| |
| The problem has the following equivalent form |
| |
| .. math:: |
| \begin{array}{ll} |
| \mbox{minimize} & \frac{1}{2} y^T y \\ |
| \mbox{subject to} & y = A x - b \\ |
| & 0 \le x \le 1 |
| \end{array} |
| |
| |
| |
| Python |
| ------ |
| |
| .. code:: python |
| |
| import osqp |
| import numpy as np |
| import scipy as sp |
| from scipy import sparse |
| |
| # Generate problem data |
| sp.random.seed(1) |
| m = 30 |
| n = 20 |
| Ad = sparse.random(m, n, density=0.7, format='csc') |
| b = np.random.randn(m) |
| |
| # OSQP data |
| P = sparse.block_diag([sparse.csc_matrix((n, n)), sparse.eye(m)], format='csc') |
| q = np.zeros(n+m) |
| A = sparse.vstack([ |
| sparse.hstack([Ad, -sparse.eye(m)]), |
| sparse.hstack([sparse.eye(n), sparse.csc_matrix((n, m))])], format='csc') |
| l = np.hstack([b, np.zeros(n)]) |
| u = np.hstack([b, np.ones(n)]) |
| |
| # Create an OSQP object |
| prob = osqp.OSQP() |
| |
| # Setup workspace |
| prob.setup(P, q, A, l, u) |
| |
| # Solve problem |
| res = prob.solve() |
| |
| |
| |
| Matlab |
| ------ |
| |
| .. code:: matlab |
| |
| % Generate problem data |
| rng(1) |
| m = 30; |
| n = 20; |
| Ad = sprandn(m, n, 0.7); |
| b = randn(m, 1); |
| |
| % OSQP data |
| P = blkdiag(sparse(n, n), speye(m)); |
| q = zeros(n+m, 1); |
| A = [Ad, -speye(m); |
| speye(n), sparse(n, m)]; |
| l = [b; zeros(n, 1)]; |
| u = [b; ones(n, 1)]; |
| |
| % Create an OSQP object |
| prob = osqp; |
| |
| % Setup workspace |
| prob.setup(P, q, A, l, u); |
| |
| % Solve problem |
| res = prob.solve(); |
| |
| |
| |
| CVXPY |
| ----- |
| |
| .. code:: python |
| |
| from cvxpy import * |
| import numpy as np |
| import scipy as sp |
| from scipy import sparse |
| |
| # Generate problem data |
| sp.random.seed(1) |
| m = 30 |
| n = 20 |
| A = sparse.random(m, n, density=0.7, format='csc') |
| b = np.random.randn(m) |
| |
| # Define problem |
| x = Variable(n) |
| objective = 0.5*sum_squares(A*x - b) |
| constraints = [x >= 0, x <= 1] |
| |
| # Solve with OSQP |
| Problem(Minimize(objective), constraints).solve(solver=OSQP) |
| |
| |
| |
| YALMIP |
| ------ |
| |
| .. code:: matlab |
| |
| % Generate data |
| rng(1) |
| m = 30; |
| n = 20; |
| A = sprandn(m, n, 0.7); |
| b = randn(m, 1); |
| |
| % Define problem |
| x = sdpvar(n, 1); |
| objective = 0.5*norm(A*x - b)^2; |
| constraints = [ 0 <= x <= 1]; |
| |
| % Solve with OSQP |
| options = sdpsettings('solver','osqp'); |
| optimize(constraints, objective, options); |
| |