| /* List and count primes. |
| Written by tege while on holiday in Rodupp, August 2001. |
| Between 10 and 500 times faster than previous program. |
| |
| Copyright 2001, 2002, 2006, 2012 Free Software Foundation, Inc. |
| |
| This program is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free Software |
| Foundation; either version 3 of the License, or (at your option) any later |
| version. |
| |
| This program is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
| PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program. If not, see https://www.gnu.org/licenses/. */ |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <math.h> |
| #include <assert.h> |
| |
| /* IDEAS: |
| * Do not fill primes[] with real primes when the range [fr,to] is small, |
| when fr,to are relatively large. Fill primes[] with odd numbers instead. |
| [Probably a bad idea, since the primes[] array would become very large.] |
| * Separate small primes and large primes when sieving. Either the Montgomery |
| way (i.e., having a large array a multiple of L1 cache size), or just |
| separate loops for primes <= S and primes > S. The latter primes do not |
| require an inner loop, since they will touch the sieving array at most once. |
| * Pre-fill sieving array with an appropriately aligned ...00100100... pattern, |
| then omit 3 from primes array. (May require similar special handling of 3 |
| as we now have for 2.) |
| * A large SIEVE_LIMIT currently implies very large memory usage, mainly due |
| to the sieving array in make_primelist, but also because of the primes[] |
| array. We might want to stage the program, using sieve_region/find_primes |
| to build primes[]. Make report() a function pointer, as part of achieving |
| this. |
| * Store primes[] as two arrays, one array with primes represented as delta |
| values using just 8 bits (if gaps are too big, store bogus primes!) |
| and one array with "rem" values. The latter needs 32-bit values. |
| * A new entry point, mpz_probab_prime_likely_p, would be useful. |
| * Improve command line syntax and versatility. "primes -f FROM -t TO", |
| allow either to be omitted for open interval. (But disallow |
| "primes -c -f FROM" since that would be infinity.) Allow printing a |
| limited *number* of primes using syntax like "primes -f FROM -n NUMBER". |
| * When looking for maxgaps, we should not perform any primality testing until |
| we find possible record gaps. Should speed up the searches tremendously. |
| */ |
| |
| #include "gmp.h" |
| |
| struct primes |
| { |
| unsigned int prime; |
| int rem; |
| }; |
| |
| struct primes *primes; |
| unsigned long n_primes; |
| |
| void find_primes (unsigned char *, mpz_t, unsigned long, mpz_t); |
| void sieve_region (unsigned char *, mpz_t, unsigned long); |
| void make_primelist (unsigned long); |
| |
| int flag_print = 1; |
| int flag_count = 0; |
| int flag_maxgap = 0; |
| unsigned long maxgap = 0; |
| unsigned long total_primes = 0; |
| |
| void |
| report (mpz_t prime) |
| { |
| total_primes += 1; |
| if (flag_print) |
| { |
| mpz_out_str (stdout, 10, prime); |
| printf ("\n"); |
| } |
| if (flag_maxgap) |
| { |
| static unsigned long prev_prime_low = 0; |
| unsigned long gap; |
| if (prev_prime_low != 0) |
| { |
| gap = mpz_get_ui (prime) - prev_prime_low; |
| if (maxgap < gap) |
| maxgap = gap; |
| } |
| prev_prime_low = mpz_get_ui (prime); |
| } |
| } |
| |
| int |
| main (int argc, char *argv[]) |
| { |
| char *progname = argv[0]; |
| mpz_t fr, to; |
| mpz_t fr2, to2; |
| unsigned long sieve_lim; |
| unsigned long est_n_primes; |
| unsigned char *s; |
| mpz_t tmp; |
| mpz_t siev_sqr_lim; |
| |
| while (argc != 1) |
| { |
| if (strcmp (argv[1], "-c") == 0) |
| { |
| flag_count = 1; |
| argv++; |
| argc--; |
| } |
| else if (strcmp (argv[1], "-p") == 0) |
| { |
| flag_print = 2; |
| argv++; |
| argc--; |
| } |
| else if (strcmp (argv[1], "-g") == 0) |
| { |
| flag_maxgap = 1; |
| argv++; |
| argc--; |
| } |
| else |
| break; |
| } |
| |
| if (flag_count || flag_maxgap) |
| flag_print--; /* clear unless an explicit -p */ |
| |
| mpz_init (fr); |
| mpz_init (to); |
| mpz_init (fr2); |
| mpz_init (to2); |
| |
| if (argc == 3) |
| { |
| mpz_set_str (fr, argv[1], 0); |
| if (argv[2][0] == '+') |
| { |
| mpz_set_str (to, argv[2] + 1, 0); |
| mpz_add (to, to, fr); |
| } |
| else |
| mpz_set_str (to, argv[2], 0); |
| } |
| else if (argc == 2) |
| { |
| mpz_set_ui (fr, 0); |
| mpz_set_str (to, argv[1], 0); |
| } |
| else |
| { |
| fprintf (stderr, "usage: %s [-c] [-p] [-g] [from [+]]to\n", progname); |
| exit (1); |
| } |
| |
| mpz_set (fr2, fr); |
| if (mpz_cmp_ui (fr2, 3) < 0) |
| { |
| mpz_set_ui (fr2, 2); |
| report (fr2); |
| mpz_set_ui (fr2, 3); |
| } |
| mpz_setbit (fr2, 0); /* make odd */ |
| mpz_sub_ui (to2, to, 1); |
| mpz_setbit (to2, 0); /* make odd */ |
| |
| mpz_init (tmp); |
| mpz_init (siev_sqr_lim); |
| |
| mpz_sqrt (tmp, to2); |
| #define SIEVE_LIMIT 10000000 |
| if (mpz_cmp_ui (tmp, SIEVE_LIMIT) < 0) |
| { |
| sieve_lim = mpz_get_ui (tmp); |
| } |
| else |
| { |
| sieve_lim = SIEVE_LIMIT; |
| mpz_sub (tmp, to2, fr2); |
| if (mpz_cmp_ui (tmp, sieve_lim) < 0) |
| sieve_lim = mpz_get_ui (tmp); /* limit sieving for small ranges */ |
| } |
| mpz_set_ui (siev_sqr_lim, sieve_lim + 1); |
| mpz_mul_ui (siev_sqr_lim, siev_sqr_lim, sieve_lim + 1); |
| |
| est_n_primes = (size_t) (sieve_lim / log((double) sieve_lim) * 1.13) + 10; |
| primes = malloc (est_n_primes * sizeof primes[0]); |
| make_primelist (sieve_lim); |
| assert (est_n_primes >= n_primes); |
| |
| #if DEBUG |
| printf ("sieve_lim = %lu\n", sieve_lim); |
| printf ("n_primes = %lu (3..%u)\n", |
| n_primes, primes[n_primes - 1].prime); |
| #endif |
| |
| #define S (1 << 15) /* FIXME: Figure out L1 cache size */ |
| s = malloc (S/2); |
| while (mpz_cmp (fr2, to2) <= 0) |
| { |
| unsigned long rsize; |
| rsize = S; |
| mpz_add_ui (tmp, fr2, rsize); |
| if (mpz_cmp (tmp, to2) > 0) |
| { |
| mpz_sub (tmp, to2, fr2); |
| rsize = mpz_get_ui (tmp) + 2; |
| } |
| #if DEBUG |
| printf ("Sieving region ["); mpz_out_str (stdout, 10, fr2); |
| printf (","); mpz_add_ui (tmp, fr2, rsize - 2); |
| mpz_out_str (stdout, 10, tmp); printf ("]\n"); |
| #endif |
| sieve_region (s, fr2, rsize); |
| find_primes (s, fr2, rsize / 2, siev_sqr_lim); |
| |
| mpz_add_ui (fr2, fr2, S); |
| } |
| free (s); |
| |
| if (flag_count) |
| printf ("Pi(interval) = %lu\n", total_primes); |
| |
| if (flag_maxgap) |
| printf ("max gap: %lu\n", maxgap); |
| |
| return 0; |
| } |
| |
| /* Find primes in region [fr,fr+rsize). Requires that fr is odd and that |
| rsize is even. The sieving array s should be aligned for "long int" and |
| have rsize/2 entries, rounded up to the nearest multiple of "long int". */ |
| void |
| sieve_region (unsigned char *s, mpz_t fr, unsigned long rsize) |
| { |
| unsigned long ssize = rsize / 2; |
| unsigned long start, start2, prime; |
| unsigned long i; |
| mpz_t tmp; |
| |
| mpz_init (tmp); |
| |
| #if 0 |
| /* initialize sieving array */ |
| for (ii = 0; ii < (ssize + sizeof (long) - 1) / sizeof (long); ii++) |
| ((long *) s) [ii] = ~0L; |
| #else |
| { |
| long k; |
| long *se = (long *) (s + ((ssize + sizeof (long) - 1) & -sizeof (long))); |
| for (k = -((ssize + sizeof (long) - 1) / sizeof (long)); k < 0; k++) |
| se[k] = ~0L; |
| } |
| #endif |
| |
| for (i = 0; i < n_primes; i++) |
| { |
| prime = primes[i].prime; |
| |
| if (primes[i].rem >= 0) |
| { |
| start2 = primes[i].rem; |
| } |
| else |
| { |
| mpz_set_ui (tmp, prime); |
| mpz_mul_ui (tmp, tmp, prime); |
| if (mpz_cmp (fr, tmp) <= 0) |
| { |
| mpz_sub (tmp, tmp, fr); |
| if (mpz_cmp_ui (tmp, 2 * ssize) > 0) |
| break; /* avoid overflow at next line, also speedup */ |
| start = mpz_get_ui (tmp); |
| } |
| else |
| { |
| start = (prime - mpz_tdiv_ui (fr, prime)) % prime; |
| if (start % 2 != 0) |
| start += prime; /* adjust if even divisible */ |
| } |
| start2 = start / 2; |
| } |
| |
| #if 0 |
| for (ii = start2; ii < ssize; ii += prime) |
| s[ii] = 0; |
| primes[i].rem = ii - ssize; |
| #else |
| { |
| long k; |
| unsigned char *se = s + ssize; /* point just beyond sieving range */ |
| for (k = start2 - ssize; k < 0; k += prime) |
| se[k] = 0; |
| primes[i].rem = k; |
| } |
| #endif |
| } |
| mpz_clear (tmp); |
| } |
| |
| /* Find primes in region [fr,fr+rsize), using the previously sieved s[]. */ |
| void |
| find_primes (unsigned char *s, mpz_t fr, unsigned long ssize, |
| mpz_t siev_sqr_lim) |
| { |
| unsigned long j, ij; |
| mpz_t tmp; |
| |
| mpz_init (tmp); |
| for (j = 0; j < (ssize + sizeof (long) - 1) / sizeof (long); j++) |
| { |
| if (((long *) s) [j] != 0) |
| { |
| for (ij = 0; ij < sizeof (long); ij++) |
| { |
| if (s[j * sizeof (long) + ij] != 0) |
| { |
| if (j * sizeof (long) + ij >= ssize) |
| goto out; |
| mpz_add_ui (tmp, fr, (j * sizeof (long) + ij) * 2); |
| if (mpz_cmp (tmp, siev_sqr_lim) < 0 || |
| mpz_probab_prime_p (tmp, 10)) |
| report (tmp); |
| } |
| } |
| } |
| } |
| out: |
| mpz_clear (tmp); |
| } |
| |
| /* Generate a list of primes and store in the global array primes[]. */ |
| void |
| make_primelist (unsigned long maxprime) |
| { |
| #if 1 |
| unsigned char *s; |
| unsigned long ssize = maxprime / 2; |
| unsigned long i, ii, j; |
| |
| s = malloc (ssize); |
| memset (s, ~0, ssize); |
| for (i = 3; ; i += 2) |
| { |
| unsigned long isqr = i * i; |
| if (isqr >= maxprime) |
| break; |
| if (s[i * i / 2 - 1] == 0) |
| continue; /* only sieve with primes */ |
| for (ii = i * i / 2 - 1; ii < ssize; ii += i) |
| s[ii] = 0; |
| } |
| n_primes = 0; |
| for (j = 0; j < ssize; j++) |
| { |
| if (s[j] != 0) |
| { |
| primes[n_primes].prime = j * 2 + 3; |
| primes[n_primes].rem = -1; |
| n_primes++; |
| } |
| } |
| /* FIXME: This should not be needed if fencepost errors were fixed... */ |
| if (primes[n_primes - 1].prime > maxprime) |
| n_primes--; |
| free (s); |
| #else |
| unsigned long i; |
| n_primes = 0; |
| for (i = 3; i <= maxprime; i += 2) |
| { |
| if (i < 7 || (i % 3 != 0 && i % 5 != 0 && i % 7 != 0)) |
| { |
| primes[n_primes].prime = i; |
| primes[n_primes].rem = -1; |
| n_primes++; |
| } |
| } |
| #endif |
| } |