| /** |
| * @file AKAZEFeatures.cpp |
| * @brief Main class for detecting and describing binary features in an |
| * accelerated nonlinear scale space |
| * @date Sep 15, 2013 |
| * @author Pablo F. Alcantarilla, Jesus Nuevo |
| */ |
| |
| #include "AKAZEFeatures.h" |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <iostream> |
| #include <opencv2/core.hpp> |
| #include <opencv2/core/hal/hal.hpp> |
| #include <opencv2/imgproc.hpp> |
| |
| #include "fed.h" |
| #include "nldiffusion_functions.h" |
| #include "utils.h" |
| |
| #ifdef AKAZE_USE_CPP11_THREADING |
| #include <atomic> |
| #include <functional> // std::ref |
| #include <future> |
| #include <thread> |
| #endif |
| |
| // Taken from opencv2/internal.hpp: IEEE754 constants and macros |
| #define CV_TOGGLE_FLT(x) ((x) ^ ((int)(x) < 0 ? 0x7fffffff : 0)) |
| |
| // Namespaces |
| namespace cv { |
| using namespace std; |
| |
| /// Internal Functions |
| inline void Compute_Main_Orientation(cv::KeyPoint& kpt, |
| const TEvolutionV2& evolution_); |
| static void generateDescriptorSubsampleV2(cv::Mat& sampleList, |
| cv::Mat& comparisons, int nbits, |
| int pattern_size, int nchannels); |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief AKAZEFeatures constructor with input options |
| * @param options AKAZEFeatures configuration options |
| * @note This constructor allocates memory for the nonlinear scale space |
| */ |
| AKAZEFeaturesV2::AKAZEFeaturesV2(const AKAZEOptionsV2& options) |
| : options_(options) { |
| cout << "AKAZEFeaturesV2 constructor called" << endl; |
| |
| #ifdef AKAZE_USE_CPP11_THREADING |
| cout << "hardware_concurrency: " << thread::hardware_concurrency() << endl; |
| #endif |
| |
| reordering_ = true; |
| |
| if (options_.descriptor_size > 0 && |
| options_.descriptor >= AKAZE::DESCRIPTOR_MLDB_UPRIGHT) { |
| generateDescriptorSubsampleV2( |
| descriptorSamples_, descriptorBits_, options_.descriptor_size, |
| options_.descriptor_pattern_size, options_.descriptor_channels); |
| } |
| |
| Allocate_Memory_Evolution(); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method allocates the memory for the nonlinear diffusion evolution |
| */ |
| void AKAZEFeaturesV2::Allocate_Memory_Evolution(void) { |
| CV_Assert(options_.img_height > 2 && |
| options_.img_width > 2); // The size of modgs_ must be positive |
| |
| // Set maximum size of the area for the descriptor computation |
| float smax = 0.0; |
| if (options_.descriptor == AKAZE::DESCRIPTOR_MLDB_UPRIGHT || |
| options_.descriptor == AKAZE::DESCRIPTOR_MLDB) { |
| smax = 10.0f * sqrtf(2.0f); |
| } else if (options_.descriptor == AKAZE::DESCRIPTOR_KAZE_UPRIGHT || |
| options_.descriptor == AKAZE::DESCRIPTOR_KAZE) { |
| smax = 12.0f * sqrtf(2.0f); |
| } |
| |
| // Allocate the dimension of the matrices for the evolution |
| int level_height = options_.img_height; |
| int level_width = options_.img_width; |
| int power = 1; |
| |
| for (int i = 0; i < options_.omax; i++) { |
| for (int j = 0; j < options_.nsublevels; j++) { |
| TEvolutionV2 step; |
| step.Lt.create(level_height, level_width, CV_32FC1); |
| step.Ldet.create(level_height, level_width, CV_32FC1); |
| step.Lsmooth.create(level_height, level_width, CV_32FC1); |
| step.Lx.create(level_height, level_width, CV_32FC1); |
| step.Ly.create(level_height, level_width, CV_32FC1); |
| step.Lxx.create(level_height, level_width, CV_32FC1); |
| step.Lxy.create(level_height, level_width, CV_32FC1); |
| step.Lyy.create(level_height, level_width, CV_32FC1); |
| step.esigma = |
| options_.soffset * pow(2.f, (float)j / options_.nsublevels + i); |
| step.sigma_size = |
| fRoundV2(step.esigma * options_.derivative_factor / |
| power); // In fact sigma_size only depends on j |
| step.border = fRoundV2(smax * step.sigma_size) + 1; |
| step.etime = 0.5f * (step.esigma * step.esigma); |
| step.octave = i; |
| step.sublevel = j; |
| step.octave_ratio = (float)power; |
| |
| // Descriptors cannot be computed for the points on the border |
| if (step.border * 2 + 1 >= level_width || |
| step.border * 2 + 1 >= level_height) |
| goto out; // The image becomes too small |
| |
| // Pre-calculate the derivative kernels |
| compute_scharr_derivative_kernelsV2(step.DxKx, step.DxKy, 1, 0, |
| step.sigma_size); |
| compute_scharr_derivative_kernelsV2(step.DyKx, step.DyKy, 0, 1, |
| step.sigma_size); |
| |
| evolution_.push_back(step); |
| } |
| |
| power <<= 1; |
| level_height >>= 1; |
| level_width >>= 1; |
| |
| // The next octave becomes too small |
| if (level_width < 80 || level_height < 40) { |
| options_.omax = i + 1; |
| break; |
| } |
| } |
| out: |
| |
| // Allocate memory for workspaces |
| lx_.create(options_.img_height, options_.img_width, CV_32FC1); |
| ly_.create(options_.img_height, options_.img_width, CV_32FC1); |
| lflow_.create(options_.img_height, options_.img_width, CV_32FC1); |
| lstep_.create(options_.img_height, options_.img_width, CV_32FC1); |
| histgram_.create(1, options_.kcontrast_nbins, CV_32SC1); |
| modgs_.create(1, (options_.img_height - 2) * (options_.img_width - 2), |
| CV_32FC1); // excluding the border |
| |
| kpts_aux_.resize(evolution_.size()); |
| for (size_t i = 0; i < evolution_.size(); i++) |
| kpts_aux_[i].reserve( |
| 1024); // reserve 1K points' space for each evolution step |
| |
| // Allocate memory for the number of cycles and time steps |
| tsteps_.resize(evolution_.size() - 1); |
| for (size_t i = 1; i < evolution_.size(); i++) { |
| fed_tau_by_process_timeV2(evolution_[i].etime - evolution_[i - 1].etime, 1, |
| 0.25f, reordering_, tsteps_[i - 1]); |
| } |
| |
| #ifdef AKAZE_USE_CPP11_THREADING |
| tasklist_.resize(2); |
| for (auto& list : tasklist_) list.resize(evolution_.size()); |
| |
| vector<atomic_int> atomic_vec(evolution_.size()); |
| taskdeps_.swap(atomic_vec); |
| #endif |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function wraps the parallel computation of Scharr derivatives. |
| * @param Lsmooth Input image to compute Scharr derivatives. |
| * @param Lx Output derivative image (horizontal) |
| * @param Ly Output derivative image (vertical) |
| * should be parallelized or not. |
| */ |
| static inline void image_derivatives(const cv::Mat& Lsmooth, cv::Mat& Lx, |
| cv::Mat& Ly) { |
| #ifdef AKAZE_USE_CPP11_THREADING |
| |
| if (getNumThreads() > 1 && (Lsmooth.rows * Lsmooth.cols) > (1 << 15)) { |
| auto task = async(launch::async, image_derivatives_scharrV2, ref(Lsmooth), |
| ref(Lx), 1, 0); |
| |
| image_derivatives_scharrV2(Lsmooth, Ly, 0, 1); |
| task.get(); |
| return; |
| } |
| |
| // Fall back to the serial path if Lsmooth is small or OpenCV parallelization |
| // is disabled |
| #endif |
| |
| image_derivatives_scharrV2(Lsmooth, Lx, 1, 0); |
| image_derivatives_scharrV2(Lsmooth, Ly, 0, 1); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method compute the first evolution step of the nonlinear scale |
| * space |
| * @param img Input image for which the nonlinear scale space needs to be |
| * created |
| * @return kcontrast factor |
| */ |
| float AKAZEFeaturesV2::Compute_Base_Evolution_Level(const cv::Mat& img) { |
| Mat Lsmooth(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32FC1, |
| lflow_.data /* like-a-union */); |
| Mat Lx(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32FC1, lx_.data); |
| Mat Ly(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32FC1, ly_.data); |
| |
| #ifdef AKAZE_USE_CPP11_THREADING |
| |
| if (getNumThreads() > 2 && (img.rows * img.cols) > (1 << 16)) { |
| auto e0_Lsmooth = async(launch::async, gaussian_2D_convolutionV2, ref(img), |
| ref(evolution_[0].Lsmooth), 0, 0, options_.soffset); |
| |
| gaussian_2D_convolutionV2(img, Lsmooth, 0, 0, 1.0f); |
| image_derivatives(Lsmooth, Lx, Ly); |
| kcontrast_ = |
| async(launch::async, compute_k_percentileV2, Lx, Ly, |
| options_.kcontrast_percentile, ref(modgs_), ref(histgram_)); |
| |
| e0_Lsmooth.get(); |
| Compute_Determinant_Hessian_Response(0); |
| |
| evolution_[0].Lsmooth.copyTo(evolution_[0].Lt); |
| return 1.0f; |
| } |
| |
| #endif |
| |
| // Compute the determinant Hessian |
| gaussian_2D_convolutionV2(img, evolution_[0].Lsmooth, 0, 0, options_.soffset); |
| Compute_Determinant_Hessian_Response(0); |
| |
| // Compute the kcontrast factor using local variables |
| gaussian_2D_convolutionV2(img, Lsmooth, 0, 0, 1.0f); |
| image_derivatives(Lsmooth, Lx, Ly); |
| float kcontrast = compute_k_percentileV2( |
| Lx, Ly, options_.kcontrast_percentile, modgs_, histgram_); |
| |
| // Copy the smoothed original image to the first level of the evolution Lt |
| evolution_[0].Lsmooth.copyTo(evolution_[0].Lt); |
| |
| return kcontrast; |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method creates the nonlinear scale space for a given image |
| * @param img Input image for which the nonlinear scale space needs to be |
| * created |
| * @return 0 if the nonlinear scale space was created successfully, -1 otherwise |
| */ |
| int AKAZEFeaturesV2::Create_Nonlinear_Scale_Space(const Mat& img) { |
| CV_Assert(evolution_.size() > 0); |
| |
| // Setup the gray-scale image |
| const Mat* gray = &img; |
| if (img.channels() != 1) { |
| cvtColor(img, gray_, COLOR_BGR2GRAY); |
| gray = &gray_; |
| } |
| |
| if (gray->type() == CV_8UC1) { |
| gray->convertTo(evolution_[0].Lt, CV_32F, 1 / 255.0); |
| gray = &evolution_[0].Lt; |
| } else if (gray->type() == CV_16UC1) { |
| gray->convertTo(evolution_[0].Lt, CV_32F, 1 / 65535.0); |
| gray = &evolution_[0].Lt; |
| } |
| CV_Assert(gray->type() == CV_32FC1); |
| |
| // Handle the trivial case |
| if (evolution_.size() == 1) { |
| gaussian_2D_convolutionV2(*gray, evolution_[0].Lsmooth, 0, 0, |
| options_.soffset); |
| evolution_[0].Lsmooth.copyTo(evolution_[0].Lt); |
| Compute_Determinant_Hessian_Response_Single(0); |
| return 0; |
| } |
| |
| // First compute Lsmooth, Hessian, and the kcontrast factor for the base |
| // evolution level |
| float kcontrast = Compute_Base_Evolution_Level(*gray); |
| |
| // Prepare Mats to be used as local workspace |
| Mat Lx(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32FC1, lx_.data); |
| Mat Ly(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32FC1, ly_.data); |
| Mat Lflow(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32FC1, |
| lflow_.data); |
| Mat Lstep(evolution_[0].Lt.rows, evolution_[0].Lt.cols, CV_32FC1, |
| lstep_.data); |
| |
| // Now generate the rest of evolution levels |
| for (size_t i = 1; i < evolution_.size(); i++) { |
| if (evolution_[i].octave > evolution_[i - 1].octave) { |
| halfsample_imageV2(evolution_[i - 1].Lt, evolution_[i].Lt); |
| kcontrast = kcontrast * 0.75f; |
| |
| // Resize the workspace images to fit Lt |
| Lx = cv::Mat(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32FC1, |
| lx_.data); |
| Ly = cv::Mat(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32FC1, |
| ly_.data); |
| Lflow = cv::Mat(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32FC1, |
| lflow_.data); |
| Lstep = cv::Mat(evolution_[i].Lt.rows, evolution_[i].Lt.cols, CV_32FC1, |
| lstep_.data); |
| } else { |
| evolution_[i - 1].Lt.copyTo(evolution_[i].Lt); |
| } |
| |
| gaussian_2D_convolutionV2(evolution_[i].Lt, evolution_[i].Lsmooth, 0, 0, |
| 1.0f); |
| |
| #ifdef AKAZE_USE_CPP11_THREADING |
| if (kcontrast_.valid()) |
| kcontrast *= |
| kcontrast_ |
| .get(); /* Join the kcontrast task so Lx and Ly can be reused */ |
| #endif |
| |
| // Compute the Gaussian derivatives Lx and Ly |
| image_derivatives(evolution_[i].Lsmooth, Lx, Ly); |
| |
| // Compute the Hessian for feature detection |
| Compute_Determinant_Hessian_Response((int)i); |
| |
| // Compute the conductivity equation Lflow |
| switch (options_.diffusivity) { |
| case KAZE::DIFF_PM_G1: |
| pm_g1V2(Lx, Ly, Lflow, kcontrast); |
| break; |
| case KAZE::DIFF_PM_G2: |
| pm_g2V2(Lx, Ly, Lflow, kcontrast); |
| break; |
| case KAZE::DIFF_WEICKERT: |
| weickert_diffusivityV2(Lx, Ly, Lflow, kcontrast); |
| break; |
| case KAZE::DIFF_CHARBONNIER: |
| charbonnier_diffusivityV2(Lx, Ly, Lflow, kcontrast); |
| break; |
| default: |
| CV_Error(options_.diffusivity, "Diffusivity is not supported"); |
| break; |
| } |
| |
| // Perform Fast Explicit Diffusion on Lt |
| const int total = Lstep.rows * Lstep.cols; |
| float* lt = evolution_[i].Lt.ptr<float>(0); |
| float* lstep = Lstep.ptr<float>(0); |
| std::vector<float>& tsteps = tsteps_[i - 1]; |
| |
| for (size_t j = 0; j < tsteps.size(); j++) { |
| nld_step_scalarV2(evolution_[i].Lt, Lflow, Lstep); |
| |
| const float step_size = tsteps[j]; |
| for (int k = 0; k < total; k++) lt[k] += lstep[k] * 0.5f * step_size; |
| } |
| } |
| |
| #ifdef AKAZE_USE_CPP11_THREADING |
| |
| if (getNumThreads() > 1) { |
| // Wait all background tasks to finish |
| for (size_t i = 0; i < evolution_.size(); i++) { |
| tasklist_[0][i].get(); |
| tasklist_[1][i].get(); |
| } |
| } |
| |
| #endif |
| |
| return 0; |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method selects interesting keypoints through the nonlinear scale |
| * space |
| * @param kpts Vector of detected keypoints |
| */ |
| void AKAZEFeaturesV2::Feature_Detection(std::vector<KeyPoint>& kpts) { |
| Find_Scale_Space_Extrema(kpts_aux_); |
| Do_Subpixel_Refinement(kpts_aux_, kpts); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the feature detector response for the nonlinear |
| * scale space |
| * @param level The evolution level to compute Hessian determinant |
| * @note We use the Hessian determinant as the feature detector response |
| */ |
| inline void AKAZEFeaturesV2::Compute_Determinant_Hessian_Response_Single( |
| const int level) { |
| TEvolutionV2& e = evolution_[level]; |
| |
| const int total = e.Lsmooth.cols * e.Lsmooth.rows; |
| float* lxx = e.Lxx.ptr<float>(0); |
| float* lxy = e.Lxy.ptr<float>(0); |
| float* lyy = e.Lyy.ptr<float>(0); |
| float* ldet = e.Ldet.ptr<float>(0); |
| |
| // Firstly compute the multiscale derivatives |
| sepFilter2D(e.Lsmooth, e.Lx, CV_32F, e.DxKx, e.DxKy); |
| sepFilter2D(e.Lx, e.Lxx, CV_32F, e.DxKx, e.DxKy); |
| sepFilter2D(e.Lx, e.Lxy, CV_32F, e.DyKx, e.DyKy); |
| sepFilter2D(e.Lsmooth, e.Ly, CV_32F, e.DyKx, e.DyKy); |
| sepFilter2D(e.Ly, e.Lyy, CV_32F, e.DyKx, e.DyKy); |
| |
| // Compute Ldet by Lxx.mul(Lyy) - Lxy.mul(Lxy) |
| for (int j = 0; j < total; j++) ldet[j] = lxx[j] * lyy[j] - lxy[j] * lxy[j]; |
| } |
| |
| #ifdef AKAZE_USE_CPP11_THREADING |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the feature detector response for the nonlinear |
| * scale space |
| * @param level The evolution level to compute Hessian determinant |
| * @note This is parallelized version of |
| * Compute_Determinant_Hessian_Response_Single() |
| */ |
| void AKAZEFeaturesV2::Compute_Determinant_Hessian_Response(const int level) { |
| if (getNumThreads() == 1) { |
| Compute_Determinant_Hessian_Response_Single(level); |
| return; |
| } |
| |
| TEvolutionV2& e = evolution_[level]; |
| atomic_int& dep = taskdeps_[level]; |
| |
| const int total = e.Lsmooth.cols * e.Lsmooth.rows; |
| float* lxx = e.Lxx.ptr<float>(0); |
| float* lxy = e.Lxy.ptr<float>(0); |
| float* lyy = e.Lyy.ptr<float>(0); |
| float* ldet = e.Ldet.ptr<float>(0); |
| |
| dep = 0; |
| |
| tasklist_[0][level] = async(launch::async, [=, &e, &dep] { |
| sepFilter2D(e.Lsmooth, e.Ly, CV_32F, e.DyKx, e.DyKy); |
| sepFilter2D(e.Ly, e.Lyy, CV_32F, e.DyKx, e.DyKy); |
| |
| if (dep.fetch_add(1, memory_order_relaxed) != 1) |
| return; // The other dependency is not ready |
| |
| sepFilter2D(e.Lx, e.Lxy, CV_32F, e.DyKx, e.DyKy); |
| for (int j = 0; j < total; j++) ldet[j] = lxx[j] * lyy[j] - lxy[j] * lxy[j]; |
| }); |
| |
| tasklist_[1][level] = async(launch::async, [=, &e, &dep] { |
| sepFilter2D(e.Lsmooth, e.Lx, CV_32F, e.DxKx, e.DxKy); |
| sepFilter2D(e.Lx, e.Lxx, CV_32F, e.DxKx, e.DxKy); |
| |
| if (dep.fetch_add(1, memory_order_relaxed) != 1) |
| return; // The other dependency is not ready |
| |
| sepFilter2D(e.Lx, e.Lxy, CV_32F, e.DyKx, e.DyKy); |
| for (int j = 0; j < total; j++) ldet[j] = lxx[j] * lyy[j] - lxy[j] * lxy[j]; |
| }); |
| |
| // tasklist_[1,2][level] have to be waited later on |
| } |
| |
| #else |
| |
| void AKAZEFeaturesV2::Compute_Determinant_Hessian_Response(const int level) { |
| Compute_Determinant_Hessian_Response_Single(level); |
| } |
| |
| #endif |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method searches v for a neighbor point of the point candidate p |
| * @param p The keypoint candidate to search a neighbor |
| * @param v The vector to store the points to be searched |
| * @param offset The starting location in the vector v to be searched at |
| * @param idx The index of the vector v if a neighbor is found |
| * @return true if a neighbor point is found; false otherwise |
| */ |
| inline bool find_neighbor_point(const KeyPoint& p, const vector<KeyPoint>& v, |
| const int offset, int& idx) { |
| const int sz = (int)v.size(); |
| |
| for (int i = offset; i < sz; i++) { |
| if (v[i].class_id == -1) // Skip a deleted point |
| continue; |
| |
| float dx = p.pt.x - v[i].pt.x; |
| float dy = p.pt.y - v[i].pt.y; |
| if (dx * dx + dy * dy <= p.size * p.size) { |
| idx = i; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| inline bool find_neighbor_point_inv(const KeyPoint& p, |
| const vector<KeyPoint>& v, const int offset, |
| int& idx) { |
| const int sz = (int)v.size(); |
| |
| for (int i = offset; i < sz; i++) { |
| if (v[i].class_id == -1) // Skip a deleted point |
| continue; |
| |
| float dx = p.pt.x - v[i].pt.x; |
| float dy = p.pt.y - v[i].pt.y; |
| if (dx * dx + dy * dy <= v[i].size * v[i].size) { |
| idx = i; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method finds extrema in the nonlinear scale space |
| * @param kpts_aux Output vectors of detected keypoints; one vector for each |
| * evolution level |
| */ |
| inline void AKAZEFeaturesV2::Find_Scale_Space_Extrema_Single( |
| std::vector<vector<KeyPoint>>& kpts_aux) { |
| // Clear the workspace to hold the keypoint candidates |
| for (size_t i = 0; i < kpts_aux_.size(); i++) kpts_aux_[i].clear(); |
| |
| for (int i = 0; i < (int)evolution_.size(); i++) { |
| const TEvolutionV2& step = evolution_[i]; |
| |
| const float* prev = step.Ldet.ptr<float>(step.border - 1); |
| const float* curr = step.Ldet.ptr<float>(step.border); |
| const float* next = step.Ldet.ptr<float>(step.border + 1); |
| |
| for (int y = step.border; y < step.Ldet.rows - step.border; y++) { |
| for (int x = step.border; x < step.Ldet.cols - step.border; x++) { |
| const float value = curr[x]; |
| |
| // Filter the points with the detector threshold |
| if (value <= options_.dthreshold) continue; |
| if (value <= curr[x - 1] || value <= curr[x + 1]) continue; |
| if (value <= prev[x - 1] || value <= prev[x] || value <= prev[x + 1]) |
| continue; |
| if (value <= next[x - 1] || value <= next[x] || value <= next[x + 1]) |
| continue; |
| |
| KeyPoint point(/* x */ static_cast<float>(x * step.octave_ratio), |
| /* y */ static_cast<float>(y * step.octave_ratio), |
| /* size */ step.esigma * options_.derivative_factor, |
| /* angle */ -1, |
| /* response */ value, |
| /* octave */ step.octave, |
| /* class_id */ i); |
| |
| int idx = 0; |
| |
| // Compare response with the same scale |
| if (find_neighbor_point(point, kpts_aux[i], 0, idx)) { |
| if (point.response > kpts_aux[i][idx].response) |
| kpts_aux[i][idx] = point; // Replace the old point |
| continue; |
| } |
| |
| // Compare response with the lower scale |
| if (i > 0 && find_neighbor_point(point, kpts_aux[i - 1], 0, idx)) { |
| if (point.response > kpts_aux[i - 1][idx].response) { |
| kpts_aux[i - 1][idx].class_id = -1; // Mark it as deleted |
| kpts_aux[i].push_back( |
| point); // Insert the new point to the right layer |
| } |
| continue; |
| } |
| |
| kpts_aux[i].push_back(point); // A good keypoint candidate is found |
| } |
| prev = curr; |
| curr = next; |
| next += step.Ldet.cols; |
| } |
| } |
| |
| // Now filter points with the upper scale level |
| for (int i = 0; i < (int)kpts_aux.size() - 1; i++) { |
| for (int j = 0; j < (int)kpts_aux[i].size(); j++) { |
| KeyPoint& pt = kpts_aux[i][j]; |
| |
| if (pt.class_id == -1) // Skip a deleted point |
| continue; |
| |
| int idx = 0; |
| while (find_neighbor_point_inv(pt, kpts_aux[i + 1], idx, idx)) { |
| if (pt.response > kpts_aux[i + 1][idx].response) |
| kpts_aux[i + 1][idx].class_id = -1; |
| ++idx; |
| } |
| } |
| } |
| } |
| |
| #ifndef AKAZE_USE_CPP11_THREADING |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method finds extrema in the nonlinear scale space |
| * @param kpts_aux Output vectors of detected keypoints; one vector for each |
| * evolution level |
| * @note This is parallelized version of Find_Scale_Space_Extrema() |
| */ |
| void AKAZEFeaturesV2::Find_Scale_Space_Extrema( |
| std::vector<vector<KeyPoint>>& kpts_aux) { |
| if (getNumThreads() == 1) { |
| Find_Scale_Space_Extrema_Single(kpts_aux); |
| return; |
| } |
| |
| for (int i = 0; i < (int)evolution_.size(); i++) { |
| const TEvolutionV2& step = evolution_[i]; |
| vector<cv::KeyPoint>& kpts = kpts_aux[i]; |
| |
| // Clear the workspace to hold the keypoint candidates |
| kpts_aux_[i].clear(); |
| |
| auto mode = (i > 0 ? launch::async : launch::deferred); |
| tasklist_[0][i] = async( |
| mode, |
| [&step, &kpts, i](const AKAZEOptionsV2& opt) { |
| const float* prev = step.Ldet.ptr<float>(step.border - 1); |
| const float* curr = step.Ldet.ptr<float>(step.border); |
| const float* next = step.Ldet.ptr<float>(step.border + 1); |
| |
| for (int y = step.border; y < step.Ldet.rows - step.border; y++) { |
| for (int x = step.border; x < step.Ldet.cols - step.border; x++) { |
| const float value = curr[x]; |
| |
| // Filter the points with the detector threshold |
| if (value <= opt.dthreshold) continue; |
| if (value <= curr[x - 1] || value <= curr[x + 1]) continue; |
| if (value <= prev[x - 1] || value <= prev[x] || |
| value <= prev[x + 1]) |
| continue; |
| if (value <= next[x - 1] || value <= next[x] || |
| value <= next[x + 1]) |
| continue; |
| |
| KeyPoint point(/* x */ static_cast<float>(x * step.octave_ratio), |
| /* y */ static_cast<float>(y * step.octave_ratio), |
| /* size */ step.esigma * opt.derivative_factor, |
| /* angle */ -1, |
| /* response */ value, |
| /* octave */ step.octave, |
| /* class_id */ i); |
| |
| int idx = 0; |
| |
| // Compare response with the same scale |
| if (find_neighbor_point(point, kpts, 0, idx)) { |
| if (point.response > kpts[idx].response) |
| kpts[idx] = point; // Replace the old point |
| continue; |
| } |
| |
| kpts.push_back(point); |
| } |
| |
| prev = curr; |
| curr = next; |
| next += step.Ldet.cols; |
| } |
| }, |
| options_); |
| } |
| |
| tasklist_[0][0].get(); |
| |
| // Filter points with the lower scale level |
| for (int i = 1; i < (int)kpts_aux.size(); i++) { |
| tasklist_[0][i].get(); |
| |
| for (int j = 0; j < (int)kpts_aux[i].size(); j++) { |
| KeyPoint& pt = kpts_aux[i][j]; |
| |
| int idx = 0; |
| while (find_neighbor_point(pt, kpts_aux[i - 1], idx, idx)) { |
| if (pt.response > kpts_aux[i - 1][idx].response) |
| kpts_aux[i - 1][idx].class_id = -1; |
| // else this pt may be pruned by the upper scale |
| ++idx; |
| } |
| } |
| } |
| |
| // Now filter points with the upper scale level (the other direction) |
| for (int i = (int)kpts_aux.size() - 2; i >= 0; i--) { |
| for (int j = 0; j < (int)kpts_aux[i].size(); j++) { |
| KeyPoint& pt = kpts_aux[i][j]; |
| |
| if (pt.class_id == -1) // Skip a deleted point |
| continue; |
| |
| int idx = 0; |
| while (find_neighbor_point_inv(pt, kpts_aux[i + 1], idx, idx)) { |
| if (pt.response > kpts_aux[i + 1][idx].response) |
| kpts_aux[i + 1][idx].class_id = -1; |
| ++idx; |
| } |
| } |
| } |
| } |
| |
| #else |
| |
| void AKAZEFeaturesV2::Find_Scale_Space_Extrema( |
| std::vector<vector<KeyPoint>>& kpts_aux) { |
| Find_Scale_Space_Extrema_Single(kpts_aux); |
| } |
| |
| #endif |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method performs subpixel refinement of the detected keypoints |
| * @param kpts_aux Input vectors of detected keypoints, sorted by evolution |
| * levels |
| * @param kpts Output vector of the final refined keypoints |
| */ |
| void AKAZEFeaturesV2::Do_Subpixel_Refinement( |
| std::vector<std::vector<KeyPoint>>& kpts_aux, std::vector<KeyPoint>& kpts) { |
| // Clear the keypoint vector |
| kpts.clear(); |
| |
| for (int i = 0; i < (int)kpts_aux.size(); i++) { |
| const float* const ldet = evolution_[i].Ldet.ptr<float>(0); |
| const float ratio = evolution_[i].octave_ratio; |
| const int cols = evolution_[i].Ldet.cols; |
| |
| for (int j = 0; j < (int)kpts_aux[i].size(); j++) { |
| KeyPoint& kp = kpts_aux[i][j]; |
| |
| if (kp.class_id == -1) continue; // Skip a deleted keypoint |
| |
| int x = (int)(kp.pt.x / ratio); |
| int y = (int)(kp.pt.y / ratio); |
| |
| // Compute the gradient |
| float Dx = 0.5f * (ldet[y * cols + x + 1] - ldet[y * cols + x - 1]); |
| float Dy = 0.5f * (ldet[(y + 1) * cols + x] - ldet[(y - 1) * cols + x]); |
| |
| // Compute the Hessian |
| float Dxx = ldet[y * cols + x + 1] + ldet[y * cols + x - 1] - |
| 2.0f * ldet[y * cols + x]; |
| float Dyy = ldet[(y + 1) * cols + x] + ldet[(y - 1) * cols + x] - |
| 2.0f * ldet[y * cols + x]; |
| float Dxy = |
| 0.25f * (ldet[(y + 1) * cols + x + 1] + ldet[(y - 1) * cols + x - 1] - |
| ldet[(y - 1) * cols + x + 1] - ldet[(y + 1) * cols + x - 1]); |
| |
| // Solve the linear system |
| Matx22f A{Dxx, Dxy, Dxy, Dyy}; |
| Vec2f b{-Dx, -Dy}; |
| Vec2f dst{0.0f, 0.0f}; |
| solve(A, b, dst, DECOMP_LU); |
| |
| float dx = dst(0); |
| float dy = dst(1); |
| |
| if (fabs(dx) > 1.0f || fabs(dy) > 1.0f) |
| continue; // Ignore the point that is not stable |
| |
| // Refine the coordinates |
| kp.pt.x += dx * ratio; |
| kp.pt.y += dy * ratio; |
| |
| kp.angle = 0.0; |
| kp.size *= 2.0f; // In OpenCV the size of a keypoint is the diameter |
| |
| // Push the refined keypoint to the final storage |
| kpts.push_back(kp); |
| } |
| } |
| } |
| |
| /* ************************************************************************* */ |
| |
| class SURF_Descriptor_Upright_64_InvokerV2 : public ParallelLoopBody { |
| public: |
| SURF_Descriptor_Upright_64_InvokerV2( |
| std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution) |
| : keypoints_(kpts), descriptors_(desc), evolution_(evolution) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| Get_SURF_Descriptor_Upright_64(keypoints_[i], descriptors_.ptr<float>(i)); |
| } |
| } |
| |
| void Get_SURF_Descriptor_Upright_64(const KeyPoint& kpt, float* desc) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| }; |
| |
| class SURF_Descriptor_64_InvokerV2 : public ParallelLoopBody { |
| public: |
| SURF_Descriptor_64_InvokerV2(std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution) |
| : keypoints_(kpts), descriptors_(desc), evolution_(evolution) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| KeyPoint& kp = keypoints_[i]; |
| Compute_Main_Orientation(kp, evolution_[kp.class_id]); |
| Get_SURF_Descriptor_64(kp, descriptors_.ptr<float>(i)); |
| } |
| } |
| |
| void Get_SURF_Descriptor_64(const KeyPoint& kpt, float* desc) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| }; |
| |
| class MSURF_Upright_Descriptor_64_InvokerV2 : public ParallelLoopBody { |
| public: |
| MSURF_Upright_Descriptor_64_InvokerV2( |
| std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution) |
| : keypoints_(kpts), descriptors_(desc), evolution_(evolution) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| Get_MSURF_Upright_Descriptor_64(keypoints_[i], |
| descriptors_.ptr<float>(i)); |
| } |
| } |
| |
| void Get_MSURF_Upright_Descriptor_64(const KeyPoint& kpt, float* desc) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| }; |
| |
| class MSURF_Descriptor_64_InvokerV2 : public ParallelLoopBody { |
| public: |
| MSURF_Descriptor_64_InvokerV2(std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution) |
| : keypoints_(kpts), descriptors_(desc), evolution_(evolution) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| Compute_Main_Orientation(keypoints_[i], |
| evolution_[keypoints_[i].class_id]); |
| Get_MSURF_Descriptor_64(keypoints_[i], descriptors_.ptr<float>(i)); |
| } |
| } |
| |
| void Get_MSURF_Descriptor_64(const KeyPoint& kpt, float* desc) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| }; |
| |
| class Upright_MLDB_Full_Descriptor_InvokerV2 : public ParallelLoopBody { |
| public: |
| Upright_MLDB_Full_Descriptor_InvokerV2( |
| std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution, const AKAZEOptionsV2& options) |
| : keypoints_(kpts), |
| descriptors_(desc), |
| evolution_(evolution), |
| options_(options) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| Get_Upright_MLDB_Full_Descriptor(keypoints_[i], |
| descriptors_.ptr<unsigned char>(i)); |
| } |
| } |
| |
| void Get_Upright_MLDB_Full_Descriptor(const KeyPoint& kpt, |
| unsigned char* desc) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| const AKAZEOptionsV2& options_; |
| }; |
| |
| class Upright_MLDB_Descriptor_Subset_InvokerV2 : public ParallelLoopBody { |
| public: |
| Upright_MLDB_Descriptor_Subset_InvokerV2( |
| std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution, const AKAZEOptionsV2& options, |
| const Mat& descriptorSamples, const Mat& descriptorBits) |
| : keypoints_(kpts), |
| descriptors_(desc), |
| evolution_(evolution), |
| options_(options), |
| descriptorSamples_(descriptorSamples), |
| descriptorBits_(descriptorBits) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| Get_Upright_MLDB_Descriptor_Subset(keypoints_[i], |
| descriptors_.ptr<unsigned char>(i)); |
| } |
| } |
| |
| void Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, |
| unsigned char* desc) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| const AKAZEOptionsV2& options_; |
| |
| const Mat& descriptorSamples_; // List of positions in the grids to sample |
| // LDB bits from. |
| const Mat& descriptorBits_; |
| }; |
| |
| class MLDB_Full_Descriptor_InvokerV2 : public ParallelLoopBody { |
| public: |
| MLDB_Full_Descriptor_InvokerV2(std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution, |
| const AKAZEOptionsV2& options) |
| : keypoints_(kpts), |
| descriptors_(desc), |
| evolution_(evolution), |
| options_(options) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| Compute_Main_Orientation(keypoints_[i], |
| evolution_[keypoints_[i].class_id]); |
| Get_MLDB_Full_Descriptor(keypoints_[i], |
| descriptors_.ptr<unsigned char>(i)); |
| keypoints_[i].angle *= (float)(180.0 / CV_PI); |
| } |
| } |
| |
| void Get_MLDB_Full_Descriptor(const KeyPoint& kpt, unsigned char* desc) const; |
| void MLDB_Fill_Values(float* values, int sample_step, int level, float xf, |
| float yf, float co, float si, float scale) const; |
| void MLDB_Binary_Comparisons(float* values, unsigned char* desc, int count, |
| int& dpos) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| const AKAZEOptionsV2& options_; |
| }; |
| |
| class MLDB_Descriptor_Subset_InvokerV2 : public ParallelLoopBody { |
| public: |
| MLDB_Descriptor_Subset_InvokerV2(std::vector<KeyPoint>& kpts, Mat& desc, |
| const std::vector<TEvolutionV2>& evolution, |
| const AKAZEOptionsV2& options, |
| const Mat& descriptorSamples, |
| const Mat& descriptorBits) |
| : keypoints_(kpts), |
| descriptors_(desc), |
| evolution_(evolution), |
| options_(options), |
| descriptorSamples_(descriptorSamples), |
| descriptorBits_(descriptorBits) {} |
| |
| void operator()(const Range& range) const { |
| for (int i = range.start; i < range.end; i++) { |
| Compute_Main_Orientation(keypoints_[i], |
| evolution_[keypoints_[i].class_id]); |
| Get_MLDB_Descriptor_Subset(keypoints_[i], |
| descriptors_.ptr<unsigned char>(i)); |
| keypoints_[i].angle *= (float)(180.0 / CV_PI); |
| } |
| } |
| |
| void Get_MLDB_Descriptor_Subset(const KeyPoint& kpt, |
| unsigned char* desc) const; |
| |
| private: |
| std::vector<KeyPoint>& keypoints_; |
| Mat& descriptors_; |
| const std::vector<TEvolutionV2>& evolution_; |
| const AKAZEOptionsV2& options_; |
| |
| const Mat& descriptorSamples_; // List of positions in the grids to sample |
| // LDB bits from. |
| const Mat& descriptorBits_; |
| }; |
| |
| /** |
| * @brief This method computes the set of descriptors through the nonlinear |
| * scale space |
| * @param kpts Vector of detected keypoints |
| * @param desc Matrix to store the descriptors |
| */ |
| void AKAZEFeaturesV2::Compute_Descriptors(std::vector<KeyPoint>& kpts, |
| Mat& desc) { |
| for (size_t i = 0; i < kpts.size(); i++) { |
| CV_Assert(0 <= kpts[i].class_id && |
| kpts[i].class_id < static_cast<int>(evolution_.size())); |
| } |
| |
| // Allocate memory for the descriptor matrix |
| if (options_.descriptor < AKAZE::DESCRIPTOR_MLDB_UPRIGHT) { |
| desc.create((int)kpts.size(), 64, CV_32FC1); |
| } else { |
| // We use the full length binary descriptor -> 486 bits |
| if (options_.descriptor_size == 0) { |
| int t = (6 + 36 + 120) * options_.descriptor_channels; |
| desc.create((int)kpts.size(), (int)ceil(t / 8.), CV_8UC1); |
| } else { |
| // We use the random bit selection length binary descriptor |
| desc.create((int)kpts.size(), (int)ceil(options_.descriptor_size / 8.), |
| CV_8UC1); |
| } |
| } |
| |
| // Compute descriptors by blocks of 16 keypoints |
| const double stride = kpts.size() / (double)(1 << 4); |
| |
| switch (options_.descriptor) { |
| case AKAZE::DESCRIPTOR_KAZE_UPRIGHT: // Upright descriptors, not invariant |
| // to rotation |
| { |
| parallel_for_( |
| Range(0, (int)kpts.size()), |
| MSURF_Upright_Descriptor_64_InvokerV2(kpts, desc, evolution_), |
| stride); |
| } break; |
| case AKAZE::DESCRIPTOR_KAZE: { |
| parallel_for_(Range(0, (int)kpts.size()), |
| MSURF_Descriptor_64_InvokerV2(kpts, desc, evolution_), |
| stride); |
| } break; |
| case AKAZE::DESCRIPTOR_MLDB_UPRIGHT: // Upright descriptors, not invariant |
| // to rotation |
| { |
| if (options_.descriptor_size == 0) |
| parallel_for_(Range(0, (int)kpts.size()), |
| Upright_MLDB_Full_Descriptor_InvokerV2( |
| kpts, desc, evolution_, options_), |
| stride); |
| else |
| parallel_for_(Range(0, (int)kpts.size()), |
| Upright_MLDB_Descriptor_Subset_InvokerV2( |
| kpts, desc, evolution_, options_, descriptorSamples_, |
| descriptorBits_), |
| stride); |
| } break; |
| case AKAZE::DESCRIPTOR_MLDB: { |
| if (options_.descriptor_size == 0) |
| parallel_for_( |
| Range(0, (int)kpts.size()), |
| MLDB_Full_Descriptor_InvokerV2(kpts, desc, evolution_, options_), |
| stride); |
| else |
| parallel_for_(Range(0, (int)kpts.size()), |
| MLDB_Descriptor_Subset_InvokerV2( |
| kpts, desc, evolution_, options_, descriptorSamples_, |
| descriptorBits_), |
| stride); |
| } break; |
| } |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function samples the derivative responses Lx and Ly for the |
| * points within the radius of 6*scale from (x0, y0), then multiply 2D Gaussian |
| * weight |
| * @param Lx Horizontal derivative |
| * @param Ly Vertical derivative |
| * @param x0 X-coordinate of the center point |
| * @param y0 Y-coordinate of the center point |
| * @param scale The sampling step |
| * @param resX Output array of the weighted horizontal derivative responses |
| * @param resY Output array of the weighted vertical derivative responses |
| */ |
| static inline void Sample_Derivative_Response_Radius6( |
| const Mat& Lx, const Mat& Ly, const int x0, const int y0, const int scale, |
| float* resX, float* resY) { |
| /* ************************************************************************* |
| */ |
| /// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and |
| /// (6,6) is bottom right |
| static const float gauss25[7][7] = { |
| {0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, |
| 0.00344629f, 0.00142946f}, |
| {0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, |
| 0.00318132f, 0.00131956f}, |
| {0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, |
| 0.00250252f, 0.00103800f}, |
| {0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, |
| 0.00167749f, 0.00069579f}, |
| {0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, |
| 0.00095820f, 0.00039744f}, |
| {0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, |
| 0.00046640f, 0.00019346f}, |
| {0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, |
| 0.00019346f, 0.00008024f}}; |
| static const int id[] = {6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6}; |
| static const struct gtable { |
| float weight[109]; |
| int8_t xidx[109]; |
| int8_t yidx[109]; |
| |
| explicit gtable(void) { |
| // Generate the weight and indices by one-time initialization |
| int k = 0; |
| for (int i = -6; i <= 6; ++i) { |
| for (int j = -6; j <= 6; ++j) { |
| if (i * i + j * j < 36) { |
| weight[k] = gauss25[id[i + 6]][id[j + 6]]; |
| yidx[k] = i; |
| xidx[k] = j; |
| ++k; |
| } |
| } |
| } |
| CV_DbgAssert(k == 109); |
| } |
| } g; |
| |
| const float* lx = Lx.ptr<float>(0); |
| const float* ly = Ly.ptr<float>(0); |
| int cols = Lx.cols; |
| |
| for (int i = 0; i < 109; i++) { |
| int j = (y0 + g.yidx[i] * scale) * cols + (x0 + g.xidx[i] * scale); |
| |
| resX[i] = g.weight[i] * lx[j]; |
| resY[i] = g.weight[i] * ly[j]; |
| } |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function sorts a[] by quantized float values |
| * @param a[] Input floating point array to sort |
| * @param n The length of a[] |
| * @param quantum The interval to convert a[i]'s float values to integers |
| * @param max The upper bound of a[], meaning a[i] must be in [0, max] |
| * @param idx[] Output array of the indices: a[idx[i]] forms a sorted array |
| * @param cum[] Output array of the starting indices of quantized floats |
| * @note The values of a[] in [k*quantum, (k + 1)*quantum) is labeled by |
| * the integer k, which is calculated by floor(a[i]/quantum). After sorting, |
| * the values from a[idx[cum[k]]] to a[idx[cum[k+1]-1]] are all labeled by k. |
| * This sorting is unstable to reduce the memory access. |
| */ |
| static inline void quantized_counting_sort(const float a[], const int n, |
| const float quantum, const float max, |
| uint8_t idx[], uint8_t cum[]) { |
| const int nkeys = (int)(max / quantum); |
| |
| // The size of cum[] must be nkeys + 1 |
| memset(cum, 0, nkeys + 1); |
| |
| // Count up the quantized values |
| for (int i = 0; i < n; i++) cum[(int)(a[i] / quantum)]++; |
| |
| // Compute the inclusive prefix sum i.e. the end indices; cum[nkeys] is the |
| // total |
| for (int i = 1; i <= nkeys; i++) cum[i] += cum[i - 1]; |
| |
| // Generate the sorted indices; cum[] becomes the exclusive prefix sum i.e. |
| // the start indices of keys |
| for (int i = 0; i < n; i++) idx[--cum[(int)(a[i] / quantum)]] = i; |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes the main orientation for a given keypoint |
| * @param kpt Input keypoint |
| * @note The orientation is computed using a similar approach as described in |
| * the original SURF method. See Bay et al., Speeded Up Robust Features, ECCV |
| * 2006 |
| */ |
| inline void Compute_Main_Orientation(KeyPoint& kpt, const TEvolutionV2& e) { |
| // Get the information from the keypoint |
| int scale = fRoundV2(0.5f * kpt.size / e.octave_ratio); |
| int x0 = fRoundV2(kpt.pt.x / e.octave_ratio); |
| int y0 = fRoundV2(kpt.pt.y / e.octave_ratio); |
| |
| // Sample derivatives responses for the points within radius of 6*scale |
| const int ang_size = 109; |
| float resX[ang_size], resY[ang_size]; |
| Sample_Derivative_Response_Radius6(e.Lx, e.Ly, x0, y0, scale, resX, resY); |
| |
| // Compute the angle of each gradient vector |
| float Ang[ang_size]; |
| hal::fastAtan2(resY, resX, Ang, ang_size, false); |
| |
| // Sort by the angles; angles are labeled by slices of 0.15 radian |
| const int slices = 42; |
| const float ang_step = (float)(2.0 * CV_PI / slices); |
| uint8_t slice[slices + 1]; |
| uint8_t sorted_idx[ang_size]; |
| quantized_counting_sort(Ang, ang_size, ang_step, (float)(2.0 * CV_PI), |
| sorted_idx, slice); |
| |
| // Find the main angle by sliding a window of 7-slice size(=PI/3) around the |
| // keypoint |
| const int win = 7; |
| |
| float maxX = 0.0f, maxY = 0.0f; |
| for (int i = slice[0]; i < slice[win]; i++) { |
| maxX += resX[sorted_idx[i]]; |
| maxY += resY[sorted_idx[i]]; |
| } |
| float maxNorm = maxX * maxX + maxY * maxY; |
| |
| for (int sn = 1; sn <= slices - win; sn++) { |
| if (slice[sn] == slice[sn - 1] && slice[sn + win] == slice[sn + win - 1]) |
| continue; // The contents of the window didn't change; don't repeat the |
| // computation |
| |
| float sumX = 0.0f, sumY = 0.0f; |
| for (int i = slice[sn]; i < slice[sn + win]; i++) { |
| sumX += resX[sorted_idx[i]]; |
| sumY += resY[sorted_idx[i]]; |
| } |
| |
| float norm = sumX * sumX + sumY * sumY; |
| if (norm > maxNorm) |
| maxNorm = norm, maxX = sumX, maxY = sumY; // Found bigger one; update |
| } |
| |
| for (int sn = slices - win + 1; sn < slices; sn++) { |
| int remain = sn + win - slices; |
| |
| if (slice[sn] == slice[sn - 1] && slice[remain] == slice[remain - 1]) |
| continue; |
| |
| float sumX = 0.0f, sumY = 0.0f; |
| for (int i = slice[sn]; i < slice[slices]; i++) { |
| sumX += resX[sorted_idx[i]]; |
| sumY += resY[sorted_idx[i]]; |
| } |
| for (int i = slice[0]; i < slice[remain]; i++) { |
| sumX += resX[sorted_idx[i]]; |
| sumY += resY[sorted_idx[i]]; |
| } |
| |
| float norm = sumX * sumX + sumY * sumY; |
| if (norm > maxNorm) maxNorm = norm, maxX = sumX, maxY = sumY; |
| } |
| |
| // Store the final result |
| kpt.angle = getAngleV2(maxX, maxY); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the upright descriptor (not rotation invariant) |
| * of the provided keypoint |
| * @param kpt Input keypoint |
| * @param desc Descriptor vector |
| * @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor |
| * is inspired from Agrawal et al., CenSurE: Center Surround Extremas for |
| * Realtime Feature Detection and Matching, ECCV 2008 |
| */ |
| void MSURF_Upright_Descriptor_64_InvokerV2::Get_MSURF_Upright_Descriptor_64( |
| const KeyPoint& kpt, float* desc) const { |
| float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, |
| gauss_s2 = 0.0; |
| float rx = 0.0, ry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, ys = 0.0, xs = 0.0; |
| float sample_x = 0.0, sample_y = 0.0; |
| int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0; |
| int x2 = 0, y2 = 0, kx = 0, ky = 0, i = 0, j = 0, dcount = 0; |
| float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, |
| res4 = 0.0; |
| int scale = 0, dsize = 0, level = 0; |
| |
| // Subregion centers for the 4x4 gaussian weighting |
| float cx = -0.5f, cy = 0.5f; |
| |
| // Set the descriptor size and the sample and pattern sizes |
| dsize = 64; |
| sample_step = 5; |
| pattern_size = 12; |
| |
| // Get the information from the keypoint |
| level = kpt.class_id; |
| ratio = evolution_[level].octave_ratio; |
| scale = fRoundV2(0.5f * kpt.size / ratio); |
| yf = kpt.pt.y / ratio; |
| xf = kpt.pt.x / ratio; |
| |
| i = -8; |
| |
| // Calculate descriptor for this interest point |
| // Area of size 24 s x 24 s |
| while (i < pattern_size) { |
| j = -8; |
| i = i - 4; |
| |
| cx += 1.0f; |
| cy = -0.5f; |
| |
| while (j < pattern_size) { |
| dx = dy = mdx = mdy = 0.0; |
| cy += 1.0f; |
| j = j - 4; |
| |
| ky = i + sample_step; |
| kx = j + sample_step; |
| |
| ys = yf + (ky * scale); |
| xs = xf + (kx * scale); |
| |
| for (int k = i; k < i + 9; k++) { |
| for (int l = j; l < j + 9; l++) { |
| sample_y = k * scale + yf; |
| sample_x = l * scale + xf; |
| |
| // Get the gaussian weighted x and y responses |
| gauss_s1 = gaussianV2(xs - sample_x, ys - sample_y, 2.50f * scale); |
| |
| y1 = (int)(sample_y - .5); |
| x1 = (int)(sample_x - .5); |
| |
| y2 = (int)(sample_y + .5); |
| x2 = (int)(sample_x + .5); |
| |
| fx = sample_x - x1; |
| fy = sample_y - y1; |
| |
| res1 = *(evolution_[level].Lx.ptr<float>(y1) + x1); |
| res2 = *(evolution_[level].Lx.ptr<float>(y1) + x2); |
| res3 = *(evolution_[level].Lx.ptr<float>(y2) + x1); |
| res4 = *(evolution_[level].Lx.ptr<float>(y2) + x2); |
| rx = (1.0f - fx) * (1.0f - fy) * res1 + fx * (1.0f - fy) * res2 + |
| (1.0f - fx) * fy * res3 + fx * fy * res4; |
| |
| res1 = *(evolution_[level].Ly.ptr<float>(y1) + x1); |
| res2 = *(evolution_[level].Ly.ptr<float>(y1) + x2); |
| res3 = *(evolution_[level].Ly.ptr<float>(y2) + x1); |
| res4 = *(evolution_[level].Ly.ptr<float>(y2) + x2); |
| ry = (1.0f - fx) * (1.0f - fy) * res1 + fx * (1.0f - fy) * res2 + |
| (1.0f - fx) * fy * res3 + fx * fy * res4; |
| |
| rx = gauss_s1 * rx; |
| ry = gauss_s1 * ry; |
| |
| // Sum the derivatives to the cumulative descriptor |
| dx += rx; |
| dy += ry; |
| mdx += fabs(rx); |
| mdy += fabs(ry); |
| } |
| } |
| |
| // Add the values to the descriptor vector |
| gauss_s2 = gaussianV2(cx - 2.0f, cy - 2.0f, 1.5f); |
| |
| desc[dcount++] = dx * gauss_s2; |
| desc[dcount++] = dy * gauss_s2; |
| desc[dcount++] = mdx * gauss_s2; |
| desc[dcount++] = mdy * gauss_s2; |
| |
| len += (dx * dx + dy * dy + mdx * mdx + mdy * mdy) * gauss_s2 * gauss_s2; |
| |
| j += 9; |
| } |
| |
| i += 9; |
| } |
| |
| // convert to unit vector |
| len = sqrt(len); |
| |
| for (i = 0; i < dsize; i++) { |
| desc[i] /= len; |
| } |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the descriptor of the provided keypoint given the |
| * main orientation of the keypoint |
| * @param kpt Input keypoint |
| * @param desc Descriptor vector |
| * @note Rectangular grid of 24 s x 24 s. Descriptor Length 64. The descriptor |
| * is inspired from Agrawal et al., CenSurE: Center Surround Extremas for |
| * Realtime Feature Detection and Matching, ECCV 2008 |
| */ |
| void MSURF_Descriptor_64_InvokerV2::Get_MSURF_Descriptor_64(const KeyPoint& kpt, |
| float* desc) const { |
| float dx = 0.0, dy = 0.0, mdx = 0.0, mdy = 0.0, gauss_s1 = 0.0, |
| gauss_s2 = 0.0; |
| float rx = 0.0, ry = 0.0, rrx = 0.0, rry = 0.0, len = 0.0, xf = 0.0, yf = 0.0, |
| ys = 0.0, xs = 0.0; |
| float sample_x = 0.0, sample_y = 0.0, co = 0.0, si = 0.0, angle = 0.0; |
| float fx = 0.0, fy = 0.0, ratio = 0.0, res1 = 0.0, res2 = 0.0, res3 = 0.0, |
| res4 = 0.0; |
| int x1 = 0, y1 = 0, x2 = 0, y2 = 0, sample_step = 0, pattern_size = 0; |
| int kx = 0, ky = 0, i = 0, j = 0, dcount = 0; |
| int scale = 0, dsize = 0, level = 0; |
| |
| // Subregion centers for the 4x4 gaussian weighting |
| float cx = -0.5f, cy = 0.5f; |
| |
| // Set the descriptor size and the sample and pattern sizes |
| dsize = 64; |
| sample_step = 5; |
| pattern_size = 12; |
| |
| // Get the information from the keypoint |
| level = kpt.class_id; |
| ratio = evolution_[level].octave_ratio; |
| scale = fRoundV2(0.5f * kpt.size / ratio); |
| angle = kpt.angle; |
| yf = kpt.pt.y / ratio; |
| xf = kpt.pt.x / ratio; |
| co = cos(angle); |
| si = sin(angle); |
| |
| i = -8; |
| |
| // Calculate descriptor for this interest point |
| // Area of size 24 s x 24 s |
| while (i < pattern_size) { |
| j = -8; |
| i = i - 4; |
| |
| cx += 1.0f; |
| cy = -0.5f; |
| |
| while (j < pattern_size) { |
| dx = dy = mdx = mdy = 0.0; |
| cy += 1.0f; |
| j = j - 4; |
| |
| ky = i + sample_step; |
| kx = j + sample_step; |
| |
| xs = xf + (-kx * scale * si + ky * scale * co); |
| ys = yf + (kx * scale * co + ky * scale * si); |
| |
| for (int k = i; k < i + 9; ++k) { |
| for (int l = j; l < j + 9; ++l) { |
| // Get coords of sample point on the rotated axis |
| sample_y = yf + (l * scale * co + k * scale * si); |
| sample_x = xf + (-l * scale * si + k * scale * co); |
| |
| // Get the gaussian weighted x and y responses |
| gauss_s1 = gaussianV2(xs - sample_x, ys - sample_y, 2.5f * scale); |
| |
| y1 = fRoundV2(sample_y - 0.5f); |
| x1 = fRoundV2(sample_x - 0.5f); |
| |
| y2 = fRoundV2(sample_y + 0.5f); |
| x2 = fRoundV2(sample_x + 0.5f); |
| |
| fx = sample_x - x1; |
| fy = sample_y - y1; |
| |
| res1 = *(evolution_[level].Lx.ptr<float>(y1) + x1); |
| res2 = *(evolution_[level].Lx.ptr<float>(y1) + x2); |
| res3 = *(evolution_[level].Lx.ptr<float>(y2) + x1); |
| res4 = *(evolution_[level].Lx.ptr<float>(y2) + x2); |
| rx = (1.0f - fx) * (1.0f - fy) * res1 + fx * (1.0f - fy) * res2 + |
| (1.0f - fx) * fy * res3 + fx * fy * res4; |
| |
| res1 = *(evolution_[level].Ly.ptr<float>(y1) + x1); |
| res2 = *(evolution_[level].Ly.ptr<float>(y1) + x2); |
| res3 = *(evolution_[level].Ly.ptr<float>(y2) + x1); |
| res4 = *(evolution_[level].Ly.ptr<float>(y2) + x2); |
| ry = (1.0f - fx) * (1.0f - fy) * res1 + fx * (1.0f - fy) * res2 + |
| (1.0f - fx) * fy * res3 + fx * fy * res4; |
| |
| // Get the x and y derivatives on the rotated axis |
| rry = gauss_s1 * (rx * co + ry * si); |
| rrx = gauss_s1 * (-rx * si + ry * co); |
| |
| // Sum the derivatives to the cumulative descriptor |
| dx += rrx; |
| dy += rry; |
| mdx += fabs(rrx); |
| mdy += fabs(rry); |
| } |
| } |
| |
| // Add the values to the descriptor vector |
| gauss_s2 = gaussianV2(cx - 2.0f, cy - 2.0f, 1.5f); |
| desc[dcount++] = dx * gauss_s2; |
| desc[dcount++] = dy * gauss_s2; |
| desc[dcount++] = mdx * gauss_s2; |
| desc[dcount++] = mdy * gauss_s2; |
| |
| len += (dx * dx + dy * dy + mdx * mdx + mdy * mdy) * gauss_s2 * gauss_s2; |
| |
| j += 9; |
| } |
| |
| i += 9; |
| } |
| |
| // convert to unit vector |
| len = sqrt(len); |
| |
| for (i = 0; i < dsize; i++) { |
| desc[i] /= len; |
| } |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the rupright descriptor (not rotation invariant) |
| * of the provided keypoint |
| * @param kpt Input keypoint |
| * @param desc Descriptor vector |
| */ |
| void Upright_MLDB_Full_Descriptor_InvokerV2::Get_Upright_MLDB_Full_Descriptor( |
| const KeyPoint& kpt, unsigned char* desc) const { |
| float di = 0.0, dx = 0.0, dy = 0.0; |
| float ri = 0.0, rx = 0.0, ry = 0.0, xf = 0.0, yf = 0.0; |
| float sample_x = 0.0, sample_y = 0.0, ratio = 0.0; |
| int x1 = 0, y1 = 0, sample_step = 0, pattern_size = 0; |
| int level = 0, nsamples = 0, scale = 0; |
| int dcount1 = 0, dcount2 = 0; |
| |
| CV_DbgAssert(options_.descriptor_channels <= 3); |
| |
| // Matrices for the M-LDB descriptor: the dimensions are [grid size] by |
| // [channel size] |
| float values_1[4][3]; |
| float values_2[9][3]; |
| float values_3[16][3]; |
| |
| // Get the information from the keypoint |
| level = kpt.class_id; |
| ratio = evolution_[level].octave_ratio; |
| scale = evolution_[level].sigma_size; |
| yf = kpt.pt.y / ratio; |
| xf = kpt.pt.x / ratio; |
| |
| // First 2x2 grid |
| pattern_size = options_.descriptor_pattern_size; |
| sample_step = pattern_size; |
| |
| for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
| for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
| di = dx = dy = 0.0; |
| nsamples = 0; |
| |
| for (int k = i; k < i + sample_step; k++) { |
| for (int l = j; l < j + sample_step; l++) { |
| // Get the coordinates of the sample point |
| sample_y = yf + l * scale; |
| sample_x = xf + k * scale; |
| |
| y1 = fRoundV2(sample_y); |
| x1 = fRoundV2(sample_x); |
| |
| ri = *(evolution_[level].Lt.ptr<float>(y1) + x1); |
| rx = *(evolution_[level].Lx.ptr<float>(y1) + x1); |
| ry = *(evolution_[level].Ly.ptr<float>(y1) + x1); |
| |
| di += ri; |
| dx += rx; |
| dy += ry; |
| nsamples++; |
| } |
| } |
| |
| di /= nsamples; |
| dx /= nsamples; |
| dy /= nsamples; |
| |
| values_1[dcount2][0] = di; |
| values_1[dcount2][1] = dx; |
| values_1[dcount2][2] = dy; |
| dcount2++; |
| } |
| } |
| |
| // Do binary comparison first level |
| for (int i = 0; i < 4; i++) { |
| for (int j = i + 1; j < 4; j++) { |
| if (values_1[i][0] > values_1[j][0]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| |
| if (values_1[i][1] > values_1[j][1]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| |
| if (values_1[i][2] > values_1[j][2]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| } |
| } |
| |
| // Second 3x3 grid |
| sample_step = static_cast<int>(ceil(pattern_size * 2. / 3.)); |
| dcount2 = 0; |
| |
| for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
| for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
| di = dx = dy = 0.0; |
| nsamples = 0; |
| |
| for (int k = i; k < i + sample_step; k++) { |
| for (int l = j; l < j + sample_step; l++) { |
| // Get the coordinates of the sample point |
| sample_y = yf + l * scale; |
| sample_x = xf + k * scale; |
| |
| y1 = fRoundV2(sample_y); |
| x1 = fRoundV2(sample_x); |
| |
| ri = *(evolution_[level].Lt.ptr<float>(y1) + x1); |
| rx = *(evolution_[level].Lx.ptr<float>(y1) + x1); |
| ry = *(evolution_[level].Ly.ptr<float>(y1) + x1); |
| |
| di += ri; |
| dx += rx; |
| dy += ry; |
| nsamples++; |
| } |
| } |
| |
| di /= nsamples; |
| dx /= nsamples; |
| dy /= nsamples; |
| |
| values_2[dcount2][0] = di; |
| values_2[dcount2][1] = dx; |
| values_2[dcount2][2] = dy; |
| dcount2++; |
| } |
| } |
| |
| // Do binary comparison second level |
| dcount2 = 0; |
| for (int i = 0; i < 9; i++) { |
| for (int j = i + 1; j < 9; j++) { |
| if (values_2[i][0] > values_2[j][0]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| |
| if (values_2[i][1] > values_2[j][1]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| |
| if (values_2[i][2] > values_2[j][2]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| } |
| } |
| |
| // Third 4x4 grid |
| sample_step = pattern_size / 2; |
| dcount2 = 0; |
| |
| for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
| for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
| di = dx = dy = 0.0; |
| nsamples = 0; |
| |
| for (int k = i; k < i + sample_step; k++) { |
| for (int l = j; l < j + sample_step; l++) { |
| // Get the coordinates of the sample point |
| sample_y = yf + l * scale; |
| sample_x = xf + k * scale; |
| |
| y1 = fRoundV2(sample_y); |
| x1 = fRoundV2(sample_x); |
| |
| ri = *(evolution_[level].Lt.ptr<float>(y1) + x1); |
| rx = *(evolution_[level].Lx.ptr<float>(y1) + x1); |
| ry = *(evolution_[level].Ly.ptr<float>(y1) + x1); |
| |
| di += ri; |
| dx += rx; |
| dy += ry; |
| nsamples++; |
| } |
| } |
| |
| di /= nsamples; |
| dx /= nsamples; |
| dy /= nsamples; |
| |
| values_3[dcount2][0] = di; |
| values_3[dcount2][1] = dx; |
| values_3[dcount2][2] = dy; |
| dcount2++; |
| } |
| } |
| |
| // Do binary comparison third level |
| dcount2 = 0; |
| for (int i = 0; i < 16; i++) { |
| for (int j = i + 1; j < 16; j++) { |
| if (values_3[i][0] > values_3[j][0]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| |
| if (values_3[i][1] > values_3[j][1]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| |
| if (values_3[i][2] > values_3[j][2]) { |
| desc[dcount1 / 8] |= (1 << (dcount1 % 8)); |
| } else { |
| desc[dcount1 / 8] &= ~(1 << (dcount1 % 8)); |
| } |
| dcount1++; |
| } |
| } |
| } |
| |
| inline void MLDB_Full_Descriptor_InvokerV2::MLDB_Fill_Values( |
| float* values, int sample_step, int level, float xf, float yf, float co, |
| float si, float scale) const { |
| int pattern_size = options_.descriptor_pattern_size; |
| int chan = options_.descriptor_channels; |
| int valpos = 0; |
| |
| for (int i = -pattern_size; i < pattern_size; i += sample_step) { |
| for (int j = -pattern_size; j < pattern_size; j += sample_step) { |
| float di, dx, dy; |
| di = dx = dy = 0.0; |
| int nsamples = 0; |
| |
| for (int k = i; k < i + sample_step; k++) { |
| for (int l = j; l < j + sample_step; l++) { |
| float sample_y = yf + (l * co * scale + k * si * scale); |
| float sample_x = xf + (-l * si * scale + k * co * scale); |
| |
| int y1 = fRoundV2(sample_y); |
| int x1 = fRoundV2(sample_x); |
| |
| float ri = *(evolution_[level].Lt.ptr<float>(y1) + x1); |
| di += ri; |
| |
| if (chan > 1) { |
| float rx = *(evolution_[level].Lx.ptr<float>(y1) + x1); |
| float ry = *(evolution_[level].Ly.ptr<float>(y1) + x1); |
| if (chan == 2) { |
| dx += sqrtf(rx * rx + ry * ry); |
| } else { |
| float rry = rx * co + ry * si; |
| float rrx = -rx * si + ry * co; |
| dx += rrx; |
| dy += rry; |
| } |
| } |
| nsamples++; |
| } |
| } |
| di /= nsamples; |
| dx /= nsamples; |
| dy /= nsamples; |
| |
| values[valpos] = di; |
| if (chan > 1) { |
| values[valpos + 1] = dx; |
| } |
| if (chan > 2) { |
| values[valpos + 2] = dy; |
| } |
| valpos += chan; |
| } |
| } |
| } |
| |
| void MLDB_Full_Descriptor_InvokerV2::MLDB_Binary_Comparisons( |
| float* values, unsigned char* desc, int count, int& dpos) const { |
| int chan = options_.descriptor_channels; |
| int32_t* ivalues = (int32_t*)values; |
| for (int i = 0; i < count * chan; i++) { |
| ivalues[i] = CV_TOGGLE_FLT(ivalues[i]); |
| } |
| |
| for (int pos = 0; pos < chan; pos++) { |
| for (int i = 0; i < count; i++) { |
| int32_t ival = ivalues[chan * i + pos]; |
| for (int j = i + 1; j < count; j++) { |
| if (ival > ivalues[chan * j + pos]) { |
| desc[dpos >> 3] |= (1 << (dpos & 7)); |
| } else { |
| desc[dpos >> 3] &= ~(1 << (dpos & 7)); |
| } |
| dpos++; |
| } |
| } |
| } |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the descriptor of the provided keypoint given the |
| * main orientation of the keypoint |
| * @param kpt Input keypoint |
| * @param desc Descriptor vector |
| */ |
| void MLDB_Full_Descriptor_InvokerV2::Get_MLDB_Full_Descriptor( |
| const KeyPoint& kpt, unsigned char* desc) const { |
| const int max_channels = 3; |
| CV_Assert(options_.descriptor_channels <= max_channels); |
| float values[16 * max_channels]; |
| const double size_mult[3] = {1, 2.0 / 3.0, 1.0 / 2.0}; |
| |
| float ratio = evolution_[kpt.class_id].octave_ratio; |
| float scale = (float)(evolution_[kpt.class_id].sigma_size); |
| float xf = kpt.pt.x / ratio; |
| float yf = kpt.pt.y / ratio; |
| float co = cos(kpt.angle); |
| float si = sin(kpt.angle); |
| int pattern_size = options_.descriptor_pattern_size; |
| |
| int dpos = 0; |
| for (int lvl = 0; lvl < 3; lvl++) { |
| int val_count = (lvl + 2) * (lvl + 2); |
| int sample_step = static_cast<int>(ceil(pattern_size * size_mult[lvl])); |
| MLDB_Fill_Values(values, sample_step, kpt.class_id, xf, yf, co, si, scale); |
| MLDB_Binary_Comparisons(values, desc, val_count, dpos); |
| } |
| |
| // Clear the uninitialized bits of the last byte |
| int remain = dpos % 8; |
| if (remain > 0) desc[dpos >> 3] &= (0xff >> (8 - remain)); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function compares two values specified by comps[] and set the |
| * i-th bit of desc if the comparison is true. |
| * @param values Input array of values to compare |
| * @param comps Input array of indices at which two values are compared |
| * @param nbits The length of values[] as well as the number of bits to write in |
| * desc |
| * @param desc Descriptor vector |
| */ |
| template <typename Typ_ = uint64_t> |
| inline void compare_and_pack_descriptor(const float values[], const int* comps, |
| const int nbits, unsigned char* desc) { |
| const int nbits_in_bucket = sizeof(Typ_) << 3; |
| const int(*idx)[2] = (const int(*)[2])comps; |
| int written = 0; |
| |
| Typ_ bucket = 0; |
| for (int i = 0; i < nbits; i++) { |
| bucket <<= 1; |
| if (values[idx[i][0]] > values[idx[i][1]]) bucket |= 1; |
| |
| if ((i & (nbits_in_bucket - 1)) == (nbits_in_bucket - 1)) |
| (reinterpret_cast<Typ_*>(desc))[written++] = bucket, bucket = 0; |
| } |
| |
| // Flush the remaining bits in bucket |
| if (written * nbits_in_bucket < nbits) { |
| written *= sizeof(Typ_); /* Convert the unit from bucket to byte */ |
| |
| int remain = (nbits + 7) / 8 - written; |
| for (int i = 0; i < remain; i++) |
| desc[written++] = (uint8_t)(bucket & 0xFF), bucket >>= 8; |
| } |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the M-LDB descriptor of the provided keypoint |
| * given the main orientation of the keypoint. The descriptor is computed based |
| * on a subset of the bits of the whole descriptor |
| * @param kpt Input keypoint |
| * @param desc Descriptor vector |
| */ |
| void MLDB_Descriptor_Subset_InvokerV2::Get_MLDB_Descriptor_Subset( |
| const KeyPoint& kpt, unsigned char* desc) const { |
| const TEvolutionV2& e = evolution_[kpt.class_id]; |
| |
| // Get the information from the keypoint |
| const int scale = e.sigma_size; |
| const float yf = kpt.pt.y / e.octave_ratio; |
| const float xf = kpt.pt.x / e.octave_ratio; |
| const float co = cos(kpt.angle); |
| const float si = sin(kpt.angle); |
| |
| // Matrices for the M-LDB descriptor: the size is [grid size] * [channel size] |
| CV_DbgAssert(descriptorSamples_.rows <= (4 + 9 + 16)); |
| CV_DbgAssert(options_.descriptor_channels <= 3); |
| float values[(4 + 9 + 16) * 3]; |
| |
| // coords[3] is { grid_width, x, y } |
| const int* coords = descriptorSamples_.ptr<int>(0); |
| |
| // Sample everything, but only do the comparisons |
| for (int i = 0; i < descriptorSamples_.rows; i++, coords += 3) { |
| float di = 0.0f; |
| float dx = 0.0f; |
| float dy = 0.0f; |
| |
| for (int x = coords[1]; x < coords[1] + coords[0]; x++) { |
| for (int y = coords[2]; y < coords[2] + coords[0]; y++) { |
| // Get the coordinates of the sample point |
| int x1 = fRoundV2(xf + (x * scale * co - y * scale * si)); |
| int y1 = fRoundV2(yf + (x * scale * si + y * scale * co)); |
| |
| di += *(e.Lt.ptr<float>(y1) + x1); |
| |
| if (options_.descriptor_channels > 1) { |
| float rx = *(e.Lx.ptr<float>(y1) + x1); |
| float ry = *(e.Ly.ptr<float>(y1) + x1); |
| |
| if (options_.descriptor_channels == 2) { |
| dx += sqrtf(rx * rx + ry * ry); |
| } else if (options_.descriptor_channels == 3) { |
| // Get the x and y derivatives on the rotated axis |
| dx += rx * co + ry * si; |
| dy += -rx * si + ry * co; |
| } |
| } |
| } |
| } |
| |
| values[i * options_.descriptor_channels] = di; |
| |
| if (options_.descriptor_channels == 2) { |
| values[i * options_.descriptor_channels + 1] = dx; |
| } else if (options_.descriptor_channels == 3) { |
| values[i * options_.descriptor_channels + 1] = dx; |
| values[i * options_.descriptor_channels + 2] = dy; |
| } |
| } |
| |
| // Do the comparisons |
| compare_and_pack_descriptor<uint64_t>(values, descriptorBits_.ptr<int>(0), |
| descriptorBits_.rows, desc); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This method computes the upright (not rotation invariant) M-LDB |
| * descriptor of the provided keypoint given the main orientation of the |
| * keypoint. The descriptor is computed based on a subset of the bits of the |
| * whole descriptor |
| * @param kpt Input keypoint |
| * @param desc Descriptor vector |
| */ |
| void Upright_MLDB_Descriptor_Subset_InvokerV2:: |
| Get_Upright_MLDB_Descriptor_Subset(const KeyPoint& kpt, |
| unsigned char* desc) const { |
| const TEvolutionV2& e = evolution_[kpt.class_id]; |
| |
| // Get the information from the keypoint |
| const int scale = e.sigma_size; |
| const float yf = kpt.pt.y / e.octave_ratio; |
| const float xf = kpt.pt.x / e.octave_ratio; |
| |
| // Matrices for the M-LDB descriptor: the size is [grid size] * [channel size] |
| CV_DbgAssert(descriptorSamples_.rows <= (4 + 9 + 16)); |
| CV_DbgAssert(options_.descriptor_channels <= 3); |
| float values[(4 + 9 + 16) * 3]; |
| |
| // coords[3] is { grid_width, x, y } |
| const int* coords = descriptorSamples_.ptr<int>(0); |
| |
| for (int i = 0; i < descriptorSamples_.rows; i++, coords += 3) { |
| float di = 0.0f; |
| float dx = 0.0f; |
| float dy = 0.0f; |
| |
| for (int x = coords[1]; x < coords[1] + coords[0]; x++) { |
| for (int y = coords[2]; y < coords[2] + coords[0]; y++) { |
| // Get the coordinates of the sample point |
| int x1 = fRoundV2(xf + x * scale); |
| int y1 = fRoundV2(yf + y * scale); |
| |
| di += *(e.Lt.ptr<float>(y1) + x1); |
| |
| if (options_.descriptor_channels > 1) { |
| float rx = *(e.Lx.ptr<float>(y1) + x1); |
| float ry = *(e.Ly.ptr<float>(y1) + x1); |
| |
| if (options_.descriptor_channels == 2) { |
| dx += sqrtf(rx * rx + ry * ry); |
| } else if (options_.descriptor_channels == 3) { |
| dx += rx; |
| dy += ry; |
| } |
| } |
| } |
| } |
| |
| values[i * options_.descriptor_channels] = di; |
| |
| if (options_.descriptor_channels == 2) { |
| values[i * options_.descriptor_channels + 1] = dx; |
| } else if (options_.descriptor_channels == 3) { |
| values[i * options_.descriptor_channels + 1] = dx; |
| values[i * options_.descriptor_channels + 2] = dy; |
| } |
| } |
| |
| // Do the comparisons |
| compare_and_pack_descriptor<uint64_t>(values, descriptorBits_.ptr<int>(0), |
| descriptorBits_.rows, desc); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes a (quasi-random) list of bits to be taken |
| * from the full descriptor. To speed the extraction, the function creates |
| * a list of the samples that are involved in generating at least a bit |
| * (sampleList) and a list of the comparisons between those samples |
| * (comparisons) |
| * @param sampleList |
| * @param comparisons The matrix with the binary comparisons |
| * @param nbits The number of bits of the descriptor |
| * @param pattern_size The pattern size for the binary descriptor |
| * @param nchannels Number of channels to consider in the descriptor (1-3) |
| * @note The function keeps the 18 bits (3-channels by 6 comparisons) of the |
| * coarser grid, since it provides the most robust estimations |
| */ |
| static void generateDescriptorSubsampleV2(Mat& sampleList, Mat& comparisons, |
| int nbits, int pattern_size, |
| int nchannels) { |
| #if 0 |
| // Replaced by an immediate to use stack; need C++11 constexpr to use the logic |
| int fullM_rows = 0; |
| for (int i = 0; i < 3; i++) { |
| int gz = (i + 2)*(i + 2); |
| fullM_rows += gz*(gz - 1) / 2; |
| } |
| #else |
| const int fullM_rows = 162; |
| #endif |
| |
| int ssz = fullM_rows * nchannels; // ssz is 486 when nchannels is 3 |
| |
| CV_Assert(nbits <= |
| ssz); // Descriptor size can't be bigger than full descriptor |
| |
| const int steps[3] = {pattern_size, (int)ceil(2.f * pattern_size / 3.f), |
| pattern_size / 2}; |
| |
| // Since the full descriptor is usually under 10k elements, we pick |
| // the selection from the full matrix. We take as many samples per |
| // pick as the number of channels. For every pick, we |
| // take the two samples involved and put them in the sampling list |
| |
| int fullM_stack[fullM_rows * |
| 5]; // About 6.3KB workspace with 64-bit int on stack |
| Mat_<int> fullM(fullM_rows, 5, fullM_stack); |
| |
| for (int i = 0, c = 0; i < 3; i++) { |
| int gdiv = i + 2; // grid divisions, per row |
| int gsz = gdiv * gdiv; |
| int psz = (int)ceil(2.f * pattern_size / (float)gdiv); |
| |
| for (int j = 0; j < gsz; j++) { |
| for (int k = j + 1; k < gsz; k++, c++) { |
| fullM(c, 0) = steps[i]; |
| fullM(c, 1) = psz * (j % gdiv) - pattern_size; |
| fullM(c, 2) = psz * (j / gdiv) - pattern_size; |
| fullM(c, 3) = psz * (k % gdiv) - pattern_size; |
| fullM(c, 4) = psz * (k / gdiv) - pattern_size; |
| } |
| } |
| } |
| |
| int comps_stack[486 * 2]; // About 7.6KB workspace with 64-bit int on stack |
| Mat_<int> comps(486, 2, comps_stack); |
| comps = 1000; |
| |
| int samples_stack[(4 + 9 + 16) * |
| 3]; // 696 bytes workspace with 64-bit int on stack |
| Mat_<int> samples((4 + 9 + 16), 3, samples_stack); |
| |
| // Select some samples. A sample includes all channels |
| int count = 0; |
| int npicks = (int)ceil(nbits / (float)nchannels); |
| samples = -1; |
| |
| srand(1024); |
| for (int i = 0; i < npicks; i++) { |
| int k = rand() % (fullM_rows - i); |
| if (i < 6) { |
| // Force use of the coarser grid values and comparisons |
| k = i; |
| } |
| |
| bool n = true; |
| |
| for (int j = 0; j < count; j++) { |
| if (samples(j, 0) == fullM(k, 0) && samples(j, 1) == fullM(k, 1) && |
| samples(j, 2) == fullM(k, 2)) { |
| n = false; |
| comps(i * nchannels, 0) = nchannels * j; |
| comps(i * nchannels + 1, 0) = nchannels * j + 1; |
| comps(i * nchannels + 2, 0) = nchannels * j + 2; |
| break; |
| } |
| } |
| |
| if (n) { |
| samples(count, 0) = fullM(k, 0); |
| samples(count, 1) = fullM(k, 1); |
| samples(count, 2) = fullM(k, 2); |
| comps(i * nchannels, 0) = nchannels * count; |
| comps(i * nchannels + 1, 0) = nchannels * count + 1; |
| comps(i * nchannels + 2, 0) = nchannels * count + 2; |
| count++; |
| } |
| |
| n = true; |
| for (int j = 0; j < count; j++) { |
| if (samples(j, 0) == fullM(k, 0) && samples(j, 1) == fullM(k, 3) && |
| samples(j, 2) == fullM(k, 4)) { |
| n = false; |
| comps(i * nchannels, 1) = nchannels * j; |
| comps(i * nchannels + 1, 1) = nchannels * j + 1; |
| comps(i * nchannels + 2, 1) = nchannels * j + 2; |
| break; |
| } |
| } |
| |
| if (n) { |
| samples(count, 0) = fullM(k, 0); |
| samples(count, 1) = fullM(k, 3); |
| samples(count, 2) = fullM(k, 4); |
| comps(i * nchannels, 1) = nchannels * count; |
| comps(i * nchannels + 1, 1) = nchannels * count + 1; |
| comps(i * nchannels + 2, 1) = nchannels * count + 2; |
| count++; |
| } |
| |
| fullM.row(fullM.rows - i - 1).copyTo(fullM.row(k)); |
| } |
| |
| sampleList = samples.rowRange(0, count).clone(); |
| comparisons = comps.rowRange(0, nbits).clone(); |
| } |
| |
| } // namespace cv |