| #ifndef FRC971_SOLVERS_CONVEX_H_ |
| #define FRC971_SOLVERS_CONVEX_H_ |
| |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <iomanip> |
| |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "absl/strings/str_join.h" |
| #include <Eigen/Dense> |
| |
| namespace frc971::solvers { |
| |
| // TODO(austin): Steal JET from Ceres to generate the derivatives easily and |
| // quickly? |
| // |
| // States is the number of inputs to the optimization problem. |
| // M is the number of inequality constraints. |
| // N is the number of equality constraints. |
| template <size_t States, size_t M, size_t N> |
| class ConvexProblem { |
| public: |
| // Returns the function to minimize and it's derivatives. |
| virtual double f0( |
| Eigen::Ref<const Eigen::Matrix<double, States, 1>> X) const = 0; |
| virtual Eigen::Matrix<double, States, 1> df0( |
| Eigen::Ref<const Eigen::Matrix<double, States, 1>> X) const = 0; |
| virtual Eigen::Matrix<double, States, States> ddf0( |
| Eigen::Ref<const Eigen::Matrix<double, States, 1>> X) const = 0; |
| |
| // Returns the constraints f(X) < 0, and their derivative. |
| virtual Eigen::Matrix<double, M, 1> f( |
| Eigen::Ref<const Eigen::Matrix<double, States, 1>> X) const = 0; |
| virtual Eigen::Matrix<double, M, States> df( |
| Eigen::Ref<const Eigen::Matrix<double, States, 1>> X) const = 0; |
| |
| // Returns the equality constraints of the form A x = b |
| virtual Eigen::Matrix<double, N, States> A() const = 0; |
| virtual Eigen::Matrix<double, N, 1> b() const = 0; |
| }; |
| |
| // Implements a Primal-Dual Interior point method convex solver. |
| // See 11.7 of https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf |
| // |
| // States is the number of inputs to the optimization problem. |
| // M is the number of inequality constraints. |
| // N is the number of equality constraints. |
| template <size_t States, size_t M, size_t N> |
| class Solver { |
| public: |
| // Ratio to require the cost to decrease when line searching. |
| static constexpr double kAlpha = 0.05; |
| // Line search step parameter. |
| static constexpr double kBeta = 0.5; |
| static constexpr double kMu = 2.0; |
| // Terminal condition for the primal problem (equality constraints) and dual |
| // (gradient + inequality constraints). |
| static constexpr double kEpsilonF = 1e-6; |
| // Terminal condition for nu, the surrogate duality gap. |
| static constexpr double kEpsilon = 1e-6; |
| |
| // Solves the problem given a feasible initial solution. |
| Eigen::Matrix<double, States, 1> Solve( |
| const ConvexProblem<States, M, N> &problem, |
| Eigen::Ref<const Eigen::Matrix<double, States, 1>> X_initial); |
| |
| private: |
| // Class to hold all the derivataves and function evaluations. |
| struct Derivatives { |
| Eigen::Matrix<double, States, 1> gradient; |
| Eigen::Matrix<double, States, States> hessian; |
| |
| // Inequality function f |
| Eigen::Matrix<double, M, 1> f; |
| // df |
| Eigen::Matrix<double, M, States> df; |
| |
| // ddf is assumed to be 0 because for the linear constraint distance |
| // function we are using, it is actually 0, and by assuming it is zero |
| // rather than passing it through as 0 to the solver, we can save enough CPU |
| // to make it worth it. |
| |
| // A |
| Eigen::Matrix<double, N, States> A; |
| // Ax - b |
| Eigen::Matrix<double, N, 1> Axmb; |
| }; |
| |
| // Computes all the values for the given problem at the given state. |
| Derivatives ComputeDerivative( |
| const ConvexProblem<States, M, N> &problem, |
| const Eigen::Ref<const Eigen::Matrix<double, States + M + N, 1>> y); |
| |
| // Computes Rt at the given state and with the given t_inverse. See 11.53 of |
| // cvxbook.pdf. |
| Eigen::Matrix<double, States + M + N, 1> Rt( |
| const Derivatives &derivatives, |
| Eigen::Matrix<double, States + M + N, 1> y, double t_inverse); |
| |
| // Prints out all the derivatives with VLOG at the provided verbosity. |
| void PrintDerivatives( |
| const Derivatives &derivatives, |
| const Eigen::Ref<const Eigen::Matrix<double, States + M + N, 1>> y, |
| std::string_view prefix, int verbosity); |
| }; |
| |
| template <size_t States, size_t M, size_t N> |
| Eigen::Matrix<double, States + M + N, 1> Solver<States, M, N>::Rt( |
| const Derivatives &derivatives, Eigen::Matrix<double, States + M + N, 1> y, |
| double t_inverse) { |
| Eigen::Matrix<double, States + M + N, 1> result; |
| |
| Eigen::Ref<Eigen::Matrix<double, States, 1>> r_dual = |
| result.template block<States, 1>(0, 0); |
| Eigen::Ref<Eigen::Matrix<double, M, 1>> r_cent = |
| result.template block<M, 1>(States, 0); |
| Eigen::Ref<Eigen::Matrix<double, N, 1>> r_pri = |
| result.template block<N, 1>(States + M, 0); |
| |
| Eigen::Ref<const Eigen::Matrix<double, M, 1>> lambda = |
| y.template block<M, 1>(States, 0); |
| Eigen::Ref<const Eigen::Matrix<double, N, 1>> v = |
| y.template block<N, 1>(States + M, 0); |
| |
| r_dual = derivatives.gradient + derivatives.df.transpose() * lambda + |
| derivatives.A.transpose() * v; |
| r_cent = -lambda.array() * derivatives.f.array() - t_inverse; |
| r_pri = derivatives.Axmb; |
| |
| return result; |
| } |
| |
| template <size_t States, size_t M, size_t N> |
| Eigen::Matrix<double, States, 1> Solver<States, M, N>::Solve( |
| const ConvexProblem<States, M, N> &problem, |
| Eigen::Ref<const Eigen::Matrix<double, States, 1>> X_initial) { |
| const Eigen::IOFormat kHeavyFormat(Eigen::StreamPrecision, 0, ", ", |
| ",\n " |
| " ", |
| "[", "]", "[", "]"); |
| |
| Eigen::Matrix<double, States + M + N, 1> y = |
| Eigen::Matrix<double, States + M + N, 1>::Constant(1.0); |
| y.template block<States, 1>(0, 0) = X_initial; |
| |
| Derivatives derivatives = ComputeDerivative(problem, y); |
| |
| for (size_t i = 0; i < M; ++i) { |
| CHECK_LE(derivatives.f(i, 0), 0.0) |
| << ": Initial state " << X_initial.transpose().format(kHeavyFormat) |
| << " not feasible"; |
| } |
| |
| PrintDerivatives(derivatives, y, "", 1); |
| |
| size_t iteration = 0; |
| while (true) { |
| // Solve for the primal-dual search direction by solving the newton step. |
| Eigen::Ref<const Eigen::Matrix<double, M, 1>> lambda = |
| y.template block<M, 1>(States, 0); |
| |
| const double nu = -(derivatives.f.transpose() * lambda)(0, 0); |
| const double t_inverse = nu / (kMu * lambda.rows()); |
| Eigen::Matrix<double, States + M + N, 1> rt_orig = |
| Rt(derivatives, y, t_inverse); |
| |
| Eigen::Matrix<double, States + M + N, States + M + N> m1; |
| m1.setZero(); |
| m1.template block<States, States>(0, 0) = derivatives.hessian; |
| m1.template block<States, M>(0, States) = derivatives.df.transpose(); |
| m1.template block<States, N>(0, States + M) = derivatives.A.transpose(); |
| m1.template block<M, States>(States, 0) = |
| -(Eigen::DiagonalMatrix<double, M>(lambda) * derivatives.df); |
| m1.template block<M, M>(States, States) = |
| Eigen::DiagonalMatrix<double, M>(-derivatives.f); |
| m1.template block<N, States>(States + M, 0) = derivatives.A; |
| |
| Eigen::Matrix<double, States + M + N, 1> dy = |
| m1.colPivHouseholderQr().solve(-rt_orig); |
| |
| Eigen::Ref<Eigen::Matrix<double, M, 1>> dlambda = |
| dy.template block<M, 1>(States, 0); |
| |
| double s = 1.0; |
| |
| // Now, time to do line search. |
| // |
| // Start by keeping lambda positive. Make sure our step doesn't let |
| // lambda cross 0. |
| for (int i = 0; i < dlambda.rows(); ++i) { |
| if (lambda(i) + s * dlambda(i) < 0.0) { |
| // Ignore tiny steps in lambda. They cause issues when we get really |
| // close to having our constraints met but haven't converged the rest |
| // of the problem and start to run into rounding issues in the matrix |
| // solve portion. |
| if (dlambda(i) < 0.0 && dlambda(i) > -1e-12) { |
| VLOG(1) << " lambda(" << i << ") " << lambda(i) << " + " << s |
| << " * " << dlambda(i) << " -> s would be now " |
| << -lambda(i) / dlambda(i); |
| dlambda(i) = 0.0; |
| VLOG(1) << " dy -> " << std::setprecision(12) << std::fixed |
| << std::setfill(' ') << dy.transpose().format(kHeavyFormat); |
| continue; |
| } |
| VLOG(1) << " lambda(" << i << ") " << lambda(i) << " + " << s << " * " |
| << dlambda(i) << " -> s now " << -lambda(i) / dlambda(i); |
| s = -lambda(i) / dlambda(i); |
| } |
| } |
| |
| VLOG(1) << " After lambda line search, s is " << s; |
| |
| VLOG(3) << " Initial step " << iteration << " -> " << std::setprecision(12) |
| << std::fixed << std::setfill(' ') |
| << dy.transpose().format(kHeavyFormat); |
| VLOG(3) << " rt -> " |
| << std::setprecision(12) << std::fixed << std::setfill(' ') |
| << rt_orig.transpose().format(kHeavyFormat); |
| |
| const double rt_orig_squared_norm = rt_orig.squaredNorm(); |
| |
| Eigen::Matrix<double, States + M + N, 1> next_y; |
| Eigen::Matrix<double, States + M + N, 1> rt; |
| Derivatives next_derivatives; |
| while (true) { |
| next_y = y + s * dy; |
| next_derivatives = ComputeDerivative(problem, next_y); |
| rt = Rt(next_derivatives, next_y, t_inverse); |
| |
| const Eigen::Ref<const Eigen::VectorXd> next_x = |
| next_y.block(0, 0, next_derivatives.hessian.rows(), 1); |
| const Eigen::Ref<const Eigen::VectorXd> next_lambda = |
| next_y.block(next_x.rows(), 0, next_derivatives.f.rows(), 1); |
| |
| const Eigen::Ref<const Eigen::VectorXd> next_v = next_y.block( |
| next_x.rows() + next_lambda.rows(), 0, next_derivatives.A.rows(), 1); |
| |
| VLOG(1) << " next_rt(" << iteration << ") is " << rt.norm() << " -> " |
| << std::setprecision(12) << std::fixed << std::setfill(' ') |
| << rt.transpose().format(kHeavyFormat); |
| |
| PrintDerivatives(next_derivatives, next_y, "next_", 3); |
| |
| if (next_derivatives.f.maxCoeff() > 0.0) { |
| VLOG(1) << " f_next > 0.0 -> " << next_derivatives.f.maxCoeff() |
| << ", continuing line search."; |
| s *= kBeta; |
| } else if (next_derivatives.Axmb.squaredNorm() < 0.1 && |
| rt.squaredNorm() > |
| std::pow(1.0 - kAlpha * s, 2.0) * rt_orig_squared_norm) { |
| VLOG(1) << " |Rt| > |Rt+1| " << rt.norm() << " > " << rt_orig.norm() |
| << ", drt -> " << std::setprecision(12) << std::fixed |
| << std::setfill(' ') |
| << (rt_orig - rt).transpose().format(kHeavyFormat); |
| s *= kBeta; |
| } else { |
| break; |
| } |
| } |
| |
| VLOG(1) << " Terminated line search with s " << s << ", " << rt.norm() |
| << "(|Rt+1|) < " << rt_orig.norm() << "(|Rt|)"; |
| y = next_y; |
| |
| const Eigen::Ref<const Eigen::VectorXd> next_lambda = |
| y.template block<M, 1>(States, 0); |
| |
| // See if we hit our convergence criteria. |
| const double r_primal_squared_norm = |
| rt.template block<N, 1>(States + M, 0).squaredNorm(); |
| VLOG(1) << " rt_next(" << iteration << ") is " << rt.norm() << " -> " |
| << std::setprecision(12) << std::fixed << std::setfill(' ') |
| << rt.transpose().format(kHeavyFormat); |
| if (r_primal_squared_norm < kEpsilonF * kEpsilonF) { |
| const double r_dual_squared_norm = |
| rt.template block<States, 1>(0, 0).squaredNorm(); |
| if (r_dual_squared_norm < kEpsilonF * kEpsilonF) { |
| const double next_nu = |
| -(next_derivatives.f.transpose() * next_lambda)(0, 0); |
| if (next_nu < kEpsilon) { |
| VLOG(1) << " r_primal(" << iteration << ") -> " |
| << std::sqrt(r_primal_squared_norm) << " < " << kEpsilonF |
| << ", r_dual(" << iteration << ") -> " |
| << std::sqrt(r_dual_squared_norm) << " < " << kEpsilonF |
| << ", nu(" << iteration << ") -> " << next_nu << " < " |
| << kEpsilon; |
| break; |
| } else { |
| VLOG(1) << " nu(" << iteration << ") -> " << next_nu << " < " |
| << kEpsilon << ", not done yet"; |
| } |
| |
| } else { |
| VLOG(1) << " r_dual(" << iteration << ") -> " |
| << std::sqrt(r_dual_squared_norm) << " < " << kEpsilonF |
| << ", not done yet"; |
| } |
| } else { |
| VLOG(1) << " r_primal(" << iteration << ") -> " |
| << std::sqrt(r_primal_squared_norm) << " < " << kEpsilonF |
| << ", not done yet"; |
| } |
| VLOG(1) << " step(" << iteration << ") " << std::setprecision(12) |
| << (s * dy).transpose().format(kHeavyFormat); |
| VLOG(1) << " y(" << iteration << ") is now " << std::setprecision(12) |
| << y.transpose().format(kHeavyFormat); |
| |
| // Very import, use the last set of derivatives we picked for our new y |
| // for the next iteration. This avoids re-computing it. |
| derivatives = std::move(next_derivatives); |
| |
| ++iteration; |
| if (iteration > 100) { |
| LOG(FATAL) << "Too many iterations"; |
| } |
| } |
| |
| return y.template block<States, 1>(0, 0); |
| } |
| |
| template <size_t States, size_t M, size_t N> |
| typename Solver<States, M, N>::Derivatives |
| Solver<States, M, N>::ComputeDerivative( |
| const ConvexProblem<States, M, N> &problem, |
| const Eigen::Ref<const Eigen::Matrix<double, States + M + N, 1>> y) { |
| const Eigen::Ref<const Eigen::Matrix<double, States, 1>> x = |
| y.template block<States, 1>(0, 0); |
| |
| Derivatives derivatives; |
| derivatives.gradient = problem.df0(x); |
| derivatives.hessian = problem.ddf0(x); |
| derivatives.f = problem.f(x); |
| derivatives.df = problem.df(x); |
| derivatives.A = problem.A(); |
| derivatives.Axmb = |
| derivatives.A * y.template block<States, 1>(0, 0) - problem.b(); |
| return derivatives; |
| } |
| |
| template <size_t States, size_t M, size_t N> |
| void Solver<States, M, N>::PrintDerivatives( |
| const Derivatives &derivatives, |
| const Eigen::Ref<const Eigen::Matrix<double, States + M + N, 1>> y, |
| std::string_view prefix, int verbosity) { |
| const Eigen::Ref<const Eigen::VectorXd> x = |
| y.block(0, 0, derivatives.hessian.rows(), 1); |
| const Eigen::Ref<const Eigen::VectorXd> lambda = |
| y.block(x.rows(), 0, derivatives.f.rows(), 1); |
| |
| if (VLOG_IS_ON(verbosity)) { |
| Eigen::IOFormat heavy(Eigen::StreamPrecision, 0, ", ", |
| ",\n " |
| " ", |
| "[", "]", "[", "]"); |
| heavy.rowSeparator = |
| heavy.rowSeparator + |
| std::string(absl::StrCat(getpid()).size() + prefix.size(), ' '); |
| |
| const Eigen::Ref<const Eigen::VectorXd> v = |
| y.block(x.rows() + lambda.rows(), 0, derivatives.A.rows(), 1); |
| VLOG(verbosity) << " " << prefix << "x: " << x.transpose().format(heavy); |
| VLOG(verbosity) << " " << prefix |
| << "lambda: " << lambda.transpose().format(heavy); |
| VLOG(verbosity) << " " << prefix << "v: " << v.transpose().format(heavy); |
| VLOG(verbosity) << " " << prefix |
| << "hessian: " << derivatives.hessian.format(heavy); |
| VLOG(verbosity) << " " << prefix |
| << "gradient: " << derivatives.gradient.format(heavy); |
| VLOG(verbosity) << " " << prefix |
| << "A: " << derivatives.A.format(heavy); |
| VLOG(verbosity) << " " << prefix |
| << "Ax-b: " << derivatives.Axmb.format(heavy); |
| VLOG(verbosity) << " " << prefix |
| << "f: " << derivatives.f.format(heavy); |
| VLOG(verbosity) << " " << prefix |
| << "df: " << derivatives.df.format(heavy); |
| } |
| } |
| |
| } // namespace frc971::solvers |
| |
| #endif // FRC971_SOLVERS_CONVEX_H_ |