blob: 1a74adf2a89f59976750738dd27db541029b06af [file] [log] [blame]
#include "frc971/imu_reader/imu.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "aos/util/crc32.h"
namespace frc971::imu {
namespace {
constexpr size_t kReadSize = 50;
constexpr double kGyroScale = 1 / 655360.0 / 360.0 * (2 * M_PI);
constexpr double kAccelScale = 1 / 26756268.0 / 9.80665;
constexpr double kTempScale = 0.1;
} // namespace
Imu::Imu(aos::ShmEventLoop *event_loop, double encoder_scalar)
: event_loop_(event_loop),
imu_sender_(
event_loop_->MakeSender<frc971::IMUValuesBatch>("/localizer")),
encoder_scalar_(encoder_scalar) {
imu_fd_ = open("/dev/adis16505", O_RDONLY | O_NONBLOCK);
PCHECK(imu_fd_ != -1) << ": Failed to open SPI device for IMU.";
aos::internal::EPoll *epoll = event_loop_->epoll();
epoll->OnReadable(imu_fd_, [this]() {
uint8_t buf[kReadSize];
ssize_t read_len = read(imu_fd_, buf, kReadSize);
// TODO: Do we care about gracefully handling EAGAIN or anything else?
// This should only get called when there is data.
PCHECK(read_len != -1);
CHECK_EQ(read_len, static_cast<ssize_t>(kReadSize))
<< ": Read incorrect number of bytes.";
auto sender = imu_sender_.MakeBuilder();
const flatbuffers::Offset<frc971::IMUValues> values_offset =
ProcessReading(sender.fbb(), absl::Span(buf, kReadSize));
const flatbuffers::Offset<
flatbuffers::Vector<flatbuffers::Offset<frc971::IMUValues>>>
readings_offset = sender.fbb()->CreateVector(&values_offset, 1);
frc971::IMUValuesBatch::Builder batch_builder =
sender.MakeBuilder<frc971::IMUValuesBatch>();
batch_builder.add_readings(readings_offset);
imu_sender_.CheckOk(sender.Send(batch_builder.Finish()));
});
}
flatbuffers::Offset<frc971::IMUValues> Imu::ProcessReading(
flatbuffers::FlatBufferBuilder *fbb, const absl::Span<uint8_t> message) {
absl::Span<const uint8_t> buf = message;
uint64_t driver_timestamp;
memcpy(&driver_timestamp, buf.data(), sizeof(driver_timestamp));
buf = buf.subspan(8);
uint16_t diag_stat;
memcpy(&diag_stat, buf.data(), sizeof(diag_stat));
buf = buf.subspan(2);
double x_gyro = ConvertValue32(buf, kGyroScale);
buf = buf.subspan(4);
double y_gyro = ConvertValue32(buf, kGyroScale);
buf = buf.subspan(4);
double z_gyro = ConvertValue32(buf, kGyroScale);
buf = buf.subspan(4);
double x_accel = ConvertValue32(buf, kAccelScale);
buf = buf.subspan(4);
double y_accel = ConvertValue32(buf, kAccelScale);
buf = buf.subspan(4);
double z_accel = ConvertValue32(buf, kAccelScale);
buf = buf.subspan(4);
double temp = ConvertValue16(buf, kTempScale);
buf = buf.subspan(2);
uint16_t data_counter;
memcpy(&data_counter, buf.data(), sizeof(data_counter));
buf = buf.subspan(2);
uint32_t pico_timestamp;
memcpy(&pico_timestamp, buf.data(), sizeof(pico_timestamp));
buf = buf.subspan(4);
int16_t encoder1_count;
memcpy(&encoder1_count, buf.data(), sizeof(encoder1_count));
buf = buf.subspan(2);
int16_t encoder2_count;
memcpy(&encoder2_count, buf.data(), sizeof(encoder2_count));
buf = buf.subspan(2);
uint32_t checksum;
memcpy(&checksum, buf.data(), sizeof(checksum));
buf = buf.subspan(4);
CHECK(buf.empty()) << "Have leftover bytes: " << buf.size();
u_int32_t calculated_checksum = aos::ComputeCrc32(message.subspan(8, 38));
if (checksum != calculated_checksum) {
this->failed_checksums_++;
}
const auto diag_stat_offset = PackDiagStat(fbb, diag_stat);
frc971::IMUValues::Builder imu_builder(*fbb);
if (checksum == calculated_checksum) {
constexpr uint16_t kChecksumMismatch = 1 << 0;
bool imu_checksum_matched = !(diag_stat & kChecksumMismatch);
// data from the IMU packet
if (imu_checksum_matched) {
imu_builder.add_gyro_x(x_gyro);
imu_builder.add_gyro_y(y_gyro);
imu_builder.add_gyro_z(z_gyro);
imu_builder.add_accelerometer_x(x_accel);
imu_builder.add_accelerometer_y(y_accel);
imu_builder.add_accelerometer_z(z_accel);
imu_builder.add_temperature(temp);
imu_builder.add_data_counter(data_counter);
}
// extra data from the pico
imu_builder.add_pico_timestamp_us(pico_timestamp);
imu_builder.add_left_encoder(-encoder_scalar_ * encoder2_count);
imu_builder.add_right_encoder(encoder_scalar_ * encoder1_count);
imu_builder.add_previous_reading_diag_stat(diag_stat_offset);
}
// extra data from us
imu_builder.add_monotonic_timestamp_ns(driver_timestamp);
imu_builder.add_failed_checksums(failed_checksums_);
imu_builder.add_checksum_failed(checksum != calculated_checksum);
return imu_builder.Finish();
}
flatbuffers::Offset<frc971::ADIS16470DiagStat> Imu::PackDiagStat(
flatbuffers::FlatBufferBuilder *fbb, uint16_t value) {
frc971::ADIS16470DiagStat::Builder diag_stat_builder(*fbb);
diag_stat_builder.add_clock_error(value & (1 << 7));
diag_stat_builder.add_memory_failure(value & (1 << 6));
diag_stat_builder.add_sensor_failure(value & (1 << 5));
diag_stat_builder.add_standby_mode(value & (1 << 4));
diag_stat_builder.add_spi_communication_error(value & (1 << 3));
diag_stat_builder.add_flash_memory_update_error(value & (1 << 2));
diag_stat_builder.add_data_path_overrun(value & (1 << 1));
diag_stat_builder.add_checksum_mismatch(value & (1 << 0));
return diag_stat_builder.Finish();
}
double Imu::ConvertValue32(absl::Span<const uint8_t> data,
double lsb_per_output) {
int32_t value;
memcpy(&value, data.data(), sizeof(value));
return static_cast<double>(value) * lsb_per_output;
}
double Imu::ConvertValue16(absl::Span<const uint8_t> data,
double lsb_per_output) {
int16_t value;
memcpy(&value, data.data(), sizeof(value));
return static_cast<double>(value) * lsb_per_output;
}
Imu::~Imu() { PCHECK(0 == close(imu_fd_)); }
} // namespace frc971::imu