| #include <inttypes.h> |
| #include <string.h> |
| #include <sys/eventfd.h> |
| #include <unistd.h> |
| |
| #include <algorithm> |
| #include <chrono> |
| #include <compare> |
| #include <random> |
| #include <ratio> |
| #include <thread> |
| |
| #include "absl/flags/flag.h" |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| |
| #include "aos/events/epoll.h" |
| #include "aos/init.h" |
| #include "aos/ipc_lib/latency_lib.h" |
| #include "aos/logging/implementations.h" |
| #include "aos/realtime.h" |
| #include "aos/time/time.h" |
| |
| // This is a demo program which uses named pipes to communicate. |
| // It measures both latency of a random timer thread, and latency of the |
| // pipe. |
| |
| ABSL_FLAG(int32_t, seconds, 10, "Duration of the test to run"); |
| ABSL_FLAG( |
| int32_t, latency_threshold, 1000, |
| "Disable tracing when anything takes more than this many microseoncds"); |
| ABSL_FLAG(int32_t, core, 7, "Core to pin to"); |
| ABSL_FLAG(int32_t, sender_priority, 53, "RT priority to send at"); |
| ABSL_FLAG(int32_t, receiver_priority, 52, "RT priority to receive at"); |
| ABSL_FLAG(int32_t, timer_priority, 51, "RT priority to spin the timer at"); |
| |
| ABSL_FLAG(bool, log_latency, false, "If true, log the latency"); |
| |
| namespace chrono = ::std::chrono; |
| |
| namespace aos { |
| |
| void SenderThread(int fd) { |
| const monotonic_clock::time_point end_time = |
| monotonic_clock::now() + chrono::seconds(absl::GetFlag(FLAGS_seconds)); |
| // Standard mersenne_twister_engine seeded with 0 |
| ::std::mt19937 generator(0); |
| |
| // Sleep between 1 and 15 ms. |
| ::std::uniform_int_distribution<> distribution(1000, 15000); |
| |
| SetCurrentThreadAffinity(MakeCpusetFromCpus({absl::GetFlag(FLAGS_core)})); |
| SetCurrentThreadRealtimePriority(absl::GetFlag(FLAGS_sender_priority)); |
| while (true) { |
| const monotonic_clock::time_point wakeup_time = |
| monotonic_clock::now() + chrono::microseconds(distribution(generator)); |
| |
| ::std::this_thread::sleep_until(wakeup_time); |
| const monotonic_clock::time_point monotonic_now = monotonic_clock::now(); |
| char sent_time_buffer[8]; |
| memcpy(sent_time_buffer, &monotonic_now, sizeof(sent_time_buffer)); |
| PCHECK(write(fd, sent_time_buffer, sizeof(sent_time_buffer))); |
| |
| if (monotonic_now > end_time) { |
| break; |
| } |
| } |
| |
| { |
| ::std::this_thread::sleep_for(chrono::milliseconds(100)); |
| const monotonic_clock::time_point stop_time(chrono::nanoseconds(1)); |
| char sent_time_buffer[8]; |
| memcpy(sent_time_buffer, &stop_time, sizeof(sent_time_buffer)); |
| PCHECK(write(fd, sent_time_buffer, sizeof(sent_time_buffer))); |
| } |
| UnsetCurrentThreadRealtimePriority(); |
| } |
| |
| void ReceiverThread(int fd) { |
| Tracing t; |
| t.Start(); |
| |
| chrono::nanoseconds max_wakeup_latency = chrono::nanoseconds(0); |
| |
| chrono::nanoseconds sum_latency = chrono::nanoseconds(0); |
| int latency_count = 0; |
| |
| internal::EPoll epoll; |
| |
| epoll.OnReadable(fd, [&t, &epoll, &max_wakeup_latency, &sum_latency, |
| &latency_count, fd]() { |
| char sent_time_buffer[8]; |
| const int ret = read(fd, static_cast<void *>(sent_time_buffer), |
| sizeof(sent_time_buffer)); |
| const monotonic_clock::time_point monotonic_now = monotonic_clock::now(); |
| CHECK_EQ(ret, 8); |
| |
| monotonic_clock::time_point sent_time; |
| memcpy(&sent_time, sent_time_buffer, sizeof(sent_time_buffer)); |
| |
| if (sent_time == monotonic_clock::time_point(chrono::nanoseconds(1))) { |
| epoll.Quit(); |
| return; |
| } |
| |
| const chrono::nanoseconds wakeup_latency = monotonic_now - sent_time; |
| |
| sum_latency += wakeup_latency; |
| ++latency_count; |
| |
| max_wakeup_latency = ::std::max(wakeup_latency, max_wakeup_latency); |
| |
| if (wakeup_latency > |
| chrono::microseconds(absl::GetFlag(FLAGS_latency_threshold))) { |
| t.Stop(); |
| AOS_LOG(INFO, "Stopped tracing, latency %" PRId64 "\n", |
| static_cast<int64_t>(wakeup_latency.count())); |
| } |
| |
| if (absl::GetFlag(FLAGS_log_latency)) { |
| AOS_LOG(INFO, "dt: %8d.%03d\n", |
| static_cast<int>(wakeup_latency.count() / 1000), |
| static_cast<int>(wakeup_latency.count() % 1000)); |
| } |
| }); |
| |
| SetCurrentThreadAffinity(MakeCpusetFromCpus({absl::GetFlag(FLAGS_core)})); |
| SetCurrentThreadRealtimePriority(absl::GetFlag(FLAGS_receiver_priority)); |
| epoll.Run(); |
| UnsetCurrentThreadRealtimePriority(); |
| epoll.DeleteFd(fd); |
| |
| const chrono::nanoseconds average_latency = sum_latency / latency_count; |
| |
| AOS_LOG(INFO, |
| "Max eventfd wakeup latency: %d.%03d microseconds, average: %d.%03d " |
| "microseconds\n", |
| static_cast<int>(max_wakeup_latency.count() / 1000), |
| static_cast<int>(max_wakeup_latency.count() % 1000), |
| static_cast<int>(average_latency.count() / 1000), |
| static_cast<int>(average_latency.count() % 1000)); |
| } |
| |
| int Main(int /*argc*/, char ** /*argv*/) { |
| AOS_LOG(INFO, "Main!\n"); |
| ::std::thread t([]() { |
| TimerThread( |
| monotonic_clock::now() + chrono::seconds(absl::GetFlag(FLAGS_seconds)), |
| absl::GetFlag(FLAGS_timer_priority)); |
| }); |
| |
| int fd = eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK); |
| PCHECK(fd); |
| |
| ::std::thread st([&fd]() { SenderThread(fd); }); |
| |
| ReceiverThread(fd); |
| st.join(); |
| |
| PCHECK(close(fd)); |
| |
| t.join(); |
| return 0; |
| } |
| |
| } // namespace aos |
| |
| int main(int argc, char **argv) { |
| aos::InitGoogle(&argc, &argv); |
| |
| return ::aos::Main(argc, argv); |
| } |