blob: e35f8fc84c8494336e65d8b6b39507d04886899e [file] [log] [blame]
#include <inttypes.h>
#include <string.h>
#include <sys/eventfd.h>
#include <unistd.h>
#include <algorithm>
#include <chrono>
#include <compare>
#include <random>
#include <ratio>
#include <thread>
#include "absl/flags/flag.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "aos/events/epoll.h"
#include "aos/init.h"
#include "aos/ipc_lib/latency_lib.h"
#include "aos/logging/implementations.h"
#include "aos/realtime.h"
#include "aos/time/time.h"
// This is a demo program which uses named pipes to communicate.
// It measures both latency of a random timer thread, and latency of the
// pipe.
ABSL_FLAG(int32_t, seconds, 10, "Duration of the test to run");
ABSL_FLAG(
int32_t, latency_threshold, 1000,
"Disable tracing when anything takes more than this many microseoncds");
ABSL_FLAG(int32_t, core, 7, "Core to pin to");
ABSL_FLAG(int32_t, sender_priority, 53, "RT priority to send at");
ABSL_FLAG(int32_t, receiver_priority, 52, "RT priority to receive at");
ABSL_FLAG(int32_t, timer_priority, 51, "RT priority to spin the timer at");
ABSL_FLAG(bool, log_latency, false, "If true, log the latency");
namespace chrono = ::std::chrono;
namespace aos {
void SenderThread(int fd) {
const monotonic_clock::time_point end_time =
monotonic_clock::now() + chrono::seconds(absl::GetFlag(FLAGS_seconds));
// Standard mersenne_twister_engine seeded with 0
::std::mt19937 generator(0);
// Sleep between 1 and 15 ms.
::std::uniform_int_distribution<> distribution(1000, 15000);
SetCurrentThreadAffinity(MakeCpusetFromCpus({absl::GetFlag(FLAGS_core)}));
SetCurrentThreadRealtimePriority(absl::GetFlag(FLAGS_sender_priority));
while (true) {
const monotonic_clock::time_point wakeup_time =
monotonic_clock::now() + chrono::microseconds(distribution(generator));
::std::this_thread::sleep_until(wakeup_time);
const monotonic_clock::time_point monotonic_now = monotonic_clock::now();
char sent_time_buffer[8];
memcpy(sent_time_buffer, &monotonic_now, sizeof(sent_time_buffer));
PCHECK(write(fd, sent_time_buffer, sizeof(sent_time_buffer)));
if (monotonic_now > end_time) {
break;
}
}
{
::std::this_thread::sleep_for(chrono::milliseconds(100));
const monotonic_clock::time_point stop_time(chrono::nanoseconds(1));
char sent_time_buffer[8];
memcpy(sent_time_buffer, &stop_time, sizeof(sent_time_buffer));
PCHECK(write(fd, sent_time_buffer, sizeof(sent_time_buffer)));
}
UnsetCurrentThreadRealtimePriority();
}
void ReceiverThread(int fd) {
Tracing t;
t.Start();
chrono::nanoseconds max_wakeup_latency = chrono::nanoseconds(0);
chrono::nanoseconds sum_latency = chrono::nanoseconds(0);
int latency_count = 0;
internal::EPoll epoll;
epoll.OnReadable(fd, [&t, &epoll, &max_wakeup_latency, &sum_latency,
&latency_count, fd]() {
char sent_time_buffer[8];
const int ret = read(fd, static_cast<void *>(sent_time_buffer),
sizeof(sent_time_buffer));
const monotonic_clock::time_point monotonic_now = monotonic_clock::now();
CHECK_EQ(ret, 8);
monotonic_clock::time_point sent_time;
memcpy(&sent_time, sent_time_buffer, sizeof(sent_time_buffer));
if (sent_time == monotonic_clock::time_point(chrono::nanoseconds(1))) {
epoll.Quit();
return;
}
const chrono::nanoseconds wakeup_latency = monotonic_now - sent_time;
sum_latency += wakeup_latency;
++latency_count;
max_wakeup_latency = ::std::max(wakeup_latency, max_wakeup_latency);
if (wakeup_latency >
chrono::microseconds(absl::GetFlag(FLAGS_latency_threshold))) {
t.Stop();
AOS_LOG(INFO, "Stopped tracing, latency %" PRId64 "\n",
static_cast<int64_t>(wakeup_latency.count()));
}
if (absl::GetFlag(FLAGS_log_latency)) {
AOS_LOG(INFO, "dt: %8d.%03d\n",
static_cast<int>(wakeup_latency.count() / 1000),
static_cast<int>(wakeup_latency.count() % 1000));
}
});
SetCurrentThreadAffinity(MakeCpusetFromCpus({absl::GetFlag(FLAGS_core)}));
SetCurrentThreadRealtimePriority(absl::GetFlag(FLAGS_receiver_priority));
epoll.Run();
UnsetCurrentThreadRealtimePriority();
epoll.DeleteFd(fd);
const chrono::nanoseconds average_latency = sum_latency / latency_count;
AOS_LOG(INFO,
"Max eventfd wakeup latency: %d.%03d microseconds, average: %d.%03d "
"microseconds\n",
static_cast<int>(max_wakeup_latency.count() / 1000),
static_cast<int>(max_wakeup_latency.count() % 1000),
static_cast<int>(average_latency.count() / 1000),
static_cast<int>(average_latency.count() % 1000));
}
int Main(int /*argc*/, char ** /*argv*/) {
AOS_LOG(INFO, "Main!\n");
::std::thread t([]() {
TimerThread(
monotonic_clock::now() + chrono::seconds(absl::GetFlag(FLAGS_seconds)),
absl::GetFlag(FLAGS_timer_priority));
});
int fd = eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK);
PCHECK(fd);
::std::thread st([&fd]() { SenderThread(fd); });
ReceiverThread(fd);
st.join();
PCHECK(close(fd));
t.join();
return 0;
}
} // namespace aos
int main(int argc, char **argv) {
aos::InitGoogle(&argc, &argv);
return ::aos::Main(argc, argv);
}