| #ifndef Y2022_CONTROL_LOOPS_LOCALIZER_LOCALIZER_H_ |
| #define Y2022_CONTROL_LOOPS_LOCALIZER_LOCALIZER_H_ |
| |
| #include "Eigen/Dense" |
| #include "Eigen/Geometry" |
| |
| #include "aos/events/event_loop.h" |
| #include "aos/containers/ring_buffer.h" |
| #include "aos/time/time.h" |
| #include "y2020/vision/sift/sift_generated.h" |
| #include "y2022/control_loops/localizer/localizer_status_generated.h" |
| #include "y2022/control_loops/localizer/localizer_output_generated.h" |
| #include "frc971/control_loops/drivetrain/improved_down_estimator.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_output_generated.h" |
| #include "frc971/control_loops/drivetrain/localizer_generated.h" |
| #include "frc971/zeroing/imu_zeroer.h" |
| #include "frc971/zeroing/wrap.h" |
| |
| namespace frc971::controls { |
| |
| namespace testing { |
| class LocalizerTest; |
| } |
| |
| // Localizer implementation that makes use of a 6-axis IMU, encoder readings, |
| // drivetrain voltages, and camera returns to localize the robot. Meant to |
| // be run on a raspberry pi. |
| // |
| // This operates on the principle that the drivetrain can be in one of two |
| // modes: |
| // 1) A "normal" mode where it is obeying the regular drivetrain model, with |
| // minimal lateral motion and no major external disturbances. This is |
| // referred to as the "model" mode in the code/variable names. |
| // 2) An non-holonomic mode where the robot is just flying around on a 2-D |
| // plane with no meaningful constraints (referred to as an "accel" model |
| // in the code, because we rely primarily on the accelerometer readings). |
| // |
| // In order to determine which mode to be in, we attempt to track whether the |
| // two models are diverging substantially. In order to do this, we maintain a |
| // 1-second long queue of "branches". A branch is generated every X iterations |
| // and contains a model state and an accel state. When the branch starts, the |
| // two will have identical states. For the remaining 1 second, the model state |
| // will evolve purely according to the drivetrian model, and the accel state |
| // will evolve purely using IMU readings. |
| // |
| // When the branch reaches 1 second in age, we calculate a residual associated |
| // with how much the accel and model based states diverged. If they have |
| // diverged substantially, that implies that the model is a poor match for |
| // whatever has been happening to the robot in the past second, so if we were |
| // previously relying on the model, we will override the current "actual" |
| // state with the branched accel state, and then continue to update the accel |
| // state based on IMU readings. |
| // If we are currently in the accel state, we will continue generating branches |
| // until the branches stop diverging--this will indicate that the model |
| // matches the accelerometer readings again, and so we will swap back to |
| // the model-based state. |
| // |
| // TODO: |
| // * Implement paying attention to camera readings. |
| // * Tune for ADIS16505/real robot. |
| class ModelBasedLocalizer { |
| public: |
| static constexpr size_t kX = 0; |
| static constexpr size_t kY = 1; |
| static constexpr size_t kTheta = 2; |
| |
| static constexpr size_t kVelocityX = 3; |
| static constexpr size_t kVelocityY = 4; |
| static constexpr size_t kNAccelStates = 5; |
| |
| static constexpr size_t kLeftEncoder = 3; |
| static constexpr size_t kLeftVelocity = 4; |
| static constexpr size_t kLeftVoltageError = 5; |
| static constexpr size_t kRightEncoder = 6; |
| static constexpr size_t kRightVelocity = 7; |
| static constexpr size_t kRightVoltageError = 8; |
| static constexpr size_t kNModelStates = 9; |
| |
| static constexpr size_t kNModelOutputs = 3; |
| |
| static constexpr size_t kNAccelOuputs = 1; |
| |
| static constexpr size_t kAccelX = 0; |
| static constexpr size_t kAccelY = 1; |
| static constexpr size_t kThetaRate = 2; |
| static constexpr size_t kNAccelInputs = 3; |
| |
| static constexpr size_t kLeftVoltage = 0; |
| static constexpr size_t kRightVoltage = 1; |
| static constexpr size_t kNModelInputs = 2; |
| |
| // Branching period, in cycles. |
| // Needs 10 to even stay alive, and still at ~96% CPU. |
| // ~20 gives ~55-60% CPU. |
| static constexpr int kBranchPeriod = 20; |
| |
| typedef Eigen::Matrix<double, kNModelStates, 1> ModelState; |
| typedef Eigen::Matrix<double, kNAccelStates, 1> AccelState; |
| typedef Eigen::Matrix<double, kNModelInputs, 1> ModelInput; |
| typedef Eigen::Matrix<double, kNAccelInputs, 1> AccelInput; |
| |
| ModelBasedLocalizer( |
| const control_loops::drivetrain::DrivetrainConfig<double> &dt_config); |
| void HandleImu(aos::monotonic_clock::time_point t, |
| const Eigen::Vector3d &gyro, const Eigen::Vector3d &accel, |
| const Eigen::Vector2d encoders, const Eigen::Vector2d voltage); |
| void HandleImageMatch(aos::monotonic_clock::time_point, |
| const vision::sift::ImageMatchResult *) { |
| LOG(FATAL) << "Unimplemented."; |
| } |
| void HandleReset(aos::monotonic_clock::time_point, |
| const Eigen::Vector3d &xytheta); |
| |
| flatbuffers::Offset<ModelBasedStatus> PopulateStatus( |
| flatbuffers::FlatBufferBuilder *fbb); |
| |
| Eigen::Vector3d xytheta() const { |
| if (using_model_) { |
| return current_state_.model_state.block<3, 1>(0, 0); |
| } else { |
| return current_state_.accel_state.block<3, 1>(0, 0); |
| } |
| } |
| |
| Eigen::Quaterniond orientation() const { return last_orientation_; } |
| |
| AccelState accel_state() const { return current_state_.accel_state; }; |
| |
| void set_longitudinal_offset(double offset) { long_offset_ = offset; } |
| |
| private: |
| struct CombinedState { |
| AccelState accel_state; |
| ModelState model_state; |
| aos::monotonic_clock::time_point branch_time; |
| double accumulated_divergence; |
| }; |
| |
| static flatbuffers::Offset<AccelBasedState> BuildAccelState( |
| flatbuffers::FlatBufferBuilder *fbb, const AccelState &state); |
| |
| static flatbuffers::Offset<ModelBasedState> BuildModelState( |
| flatbuffers::FlatBufferBuilder *fbb, const ModelState &state); |
| |
| Eigen::Matrix<double, kNModelStates, kNModelStates> AModel( |
| const ModelState &state) const; |
| Eigen::Matrix<double, kNAccelStates, kNAccelStates> AAccel() const; |
| ModelState DiffModel(const ModelState &state, const ModelInput &U) const; |
| AccelState DiffAccel(const AccelState &state, const AccelInput &U) const; |
| |
| ModelState UpdateModel(const ModelState &model, const ModelInput &input, |
| aos::monotonic_clock::duration dt) const; |
| AccelState UpdateAccel(const AccelState &accel, const AccelInput &input, |
| aos::monotonic_clock::duration dt) const; |
| |
| AccelState AccelStateForModelState(const ModelState &state) const; |
| ModelState ModelStateForAccelState(const AccelState &state, |
| const Eigen::Vector2d &encoders, |
| const double yaw_rate) const; |
| double ModelDivergence(const CombinedState &state, |
| const AccelInput &accel_inputs, |
| const Eigen::Vector2d &filtered_accel, |
| const ModelInput &model_inputs); |
| void UpdateState( |
| CombinedState *state, |
| const Eigen::Matrix<double, kNModelStates, kNModelOutputs> &K, |
| const Eigen::Matrix<double, kNModelOutputs, 1> &Z, |
| const Eigen::Matrix<double, kNModelOutputs, kNModelStates> &H, |
| const AccelInput &accel_input, const ModelInput &model_input, |
| aos::monotonic_clock::duration dt); |
| |
| const control_loops::drivetrain::DrivetrainConfig<double> dt_config_; |
| const StateFeedbackHybridPlantCoefficients<2, 2, 2, double> |
| velocity_drivetrain_coefficients_; |
| Eigen::Matrix<double, kNModelStates, kNModelStates> A_continuous_model_; |
| Eigen::Matrix<double, kNAccelStates, kNAccelStates> A_continuous_accel_; |
| Eigen::Matrix<double, kNModelStates, kNModelInputs> B_continuous_model_; |
| Eigen::Matrix<double, kNAccelStates, kNAccelInputs> B_continuous_accel_; |
| |
| Eigen::Matrix<double, kNModelStates, kNModelStates> Q_continuous_model_; |
| |
| Eigen::Matrix<double, kNModelStates, kNModelStates> P_model_; |
| // When we are following the model, we will, on each iteration: |
| // 1) Perform a model-based update of a single state. |
| // 2) Add a hypothetical non-model-based entry based on the current state. |
| // 3) Evict too-old non-model-based entries. |
| control_loops::drivetrain::DrivetrainUkf down_estimator_; |
| |
| // Buffer of old branches these are all created by initializing a new |
| // model-based state based on the current state, and then initializing a new |
| // accel-based state on top of that new model-based state (to eliminate the |
| // impact of any lateral motion). |
| // We then integrate up all of these states and observe how much the model and |
| // accel based states of each branch compare to one another. |
| aos::RingBuffer<CombinedState, 2000 / kBranchPeriod> branches_; |
| int branch_counter_ = 0; |
| |
| CombinedState current_state_; |
| aos::monotonic_clock::time_point t_ = aos::monotonic_clock::min_time; |
| bool using_model_; |
| |
| // X position of the IMU, in meters. 0 = center of robot, positive = ahead of |
| // center, negative = behind center. |
| double long_offset_ = -0.15; |
| |
| double last_residual_ = 0.0; |
| double filtered_residual_ = 0.0; |
| Eigen::Vector2d filtered_residual_accel_ = Eigen::Vector2d::Zero(); |
| Eigen::Vector3d abs_accel_ = Eigen::Vector3d::Zero(); |
| double velocity_residual_ = 0.0; |
| double accel_residual_ = 0.0; |
| double theta_rate_residual_ = 0.0; |
| int hysteresis_count_ = 0; |
| Eigen::Quaterniond last_orientation_ = Eigen::Quaterniond::Identity(); |
| |
| int clock_resets_ = 0; |
| |
| friend class testing::LocalizerTest; |
| }; |
| |
| class EventLoopLocalizer { |
| public: |
| EventLoopLocalizer( |
| aos::EventLoop *event_loop, |
| const control_loops::drivetrain::DrivetrainConfig<double> &dt_config); |
| |
| ModelBasedLocalizer *localizer() { return &model_based_; } |
| |
| private: |
| aos::EventLoop *event_loop_; |
| ModelBasedLocalizer model_based_; |
| aos::Sender<LocalizerStatus> status_sender_; |
| aos::Sender<LocalizerOutput> output_sender_; |
| aos::Fetcher<frc971::control_loops::drivetrain::Output> output_fetcher_; |
| zeroing::ImuZeroer zeroer_; |
| aos::monotonic_clock::time_point last_output_send_ = |
| aos::monotonic_clock::min_time; |
| std::optional<aos::monotonic_clock::time_point> last_pico_timestamp_; |
| aos::monotonic_clock::duration pico_offset_error_; |
| // t = pico_offset_ + pico_timestamp. |
| // Note that this can drift over sufficiently long time periods! |
| std::optional<std::chrono::nanoseconds> pico_offset_; |
| |
| zeroing::UnwrapSensor left_encoder_; |
| zeroing::UnwrapSensor right_encoder_; |
| }; |
| } // namespace frc971::controls |
| #endif // Y2022_CONTROL_LOOPS_LOCALIZER_LOCALIZER_H_ |